Reducing Yield Variability Through Soil Health

WAYNE FREDERICKS, OSAGE, IA DR. JERRY HATFIELD, USDA-ARS, AMES, IA

> 2020 PFI Annual Conference January 17, 2020, Ames, IA

Journey to Where?

Any Rewards?

herminutomo www.fotosearch.com

First Fork in the Road

NO TILL BEANS

Winter 1991-92 Froze early, no plowing

Internet Brant

Second Fork in the Road

Strip Till Corn

Third Fork in the Road

Cover Crops

Rock Creek – June 8, 2008

Charles City – June 9, 2008

Cedar Rapids – June 13, 2008

Gulf of Mexico

Elected to Iowa Soybean Association Board 2009

Heavily involved with On-Farm Network Began Cover Crop trials in 2012 IOWA NUTRIENT REDUCTION STRATEGY A science and technology-based framework to assess and reduce nutrients to lowa waters and the Gulf of Mexico

Prepared by: Iowa Department of Agriculture and Land Stewardship Iowa Department of Natural Resources Iowa State University College of Agriculture and Life Sciences May 2013

Iowa Strategy to Reduce Nutrient Loss: Nitrogen Practices

This table lists practices with the largest potential impact on nitrate-N concentration reduction (except where noted). Corn yield impacts associated with each practice also are shown as some practices may be detrimental to corn production. If using a combination of practices, the reductions are not additive. Reductions are field level results that may be expected where practice is applicable and implemented.

	Practice	Comments	% Nitrate-N Reduction [*]	% Corn Yield Change ^{**}
			Average (SD [†])	Average (SD [†])
Nitrogen Management [‡]	Timing	Moving from fall to spring pre-plant application	6 (25)	4 (16)
		Spring pre-plant/sidedress 40-60 split Compared to fall-applied	5 (28)	10 (7)
		Sidedress – Compared to pre-plant application	7 (37)	0 (3)
		Sidedress – Soil test based compared to pre-plant	4 (20)	13 (22)**
	Source	Liquid swine manure compared to spring-applied fertilizer	4 (11)	0 (13)
		Poultry manure compared to spring-applied fertilizer	-3 (20)	-2 (14)
	Nitrogen Application Rate	Nitrogen rate at the MRTN (0.10 N:corn price ratio) compared to current estimated application rate. (ISU Corn Nitrogen Rate Calculator –	10	
		http://cnrc.agron.iastate.edu can be used to estimate MRTN but this would change Nitrate-N concentration reduction)		-1
	Nitrification Inhibitor	Nitrapyrin in fall – Compared to fall-applied without Nitrapyrin	9 (19)	6 (22)
		Rye	31 (29)	-6 (7)
	Cover Crops	Oat	28 (2)	-5 (1)
	Living Mulches	e.g. Kura clover – Nitrate-N reduction from one site	41 (16)	-9 (32)
c.	Perennial	Energy Crops – Compared to spring-applied fertilizer	72 (23)	
Land Use		Land Retirement (CRP) – Compared to spring-applied fertilizer	85 (9)	
	Extended Rotations	At least 2 years of alfalfa in a 4 or 5 year rotation	42 (12)	7 (7)
	Grazed Pastures	No pertinent information from Iowa – assume similar to CRP	85	
Edge-of-Field	Drainage Water Mgmt.	No impact on concentration	33 (32)	
	Shallow Drainage	No impact on concentration	32 (15)	
	Wetlands	Targeted water quality	52	
	Bioreactors		43 (21)	
	Buffers	Only for water that interacts with the active zone below the buffer. This would only be a fraction of all water that makes it to a stream.	91 (20)	
	Saturated Buffers	Divert fraction of tile drainage into riparian buffer to remove Nitrate-N by denitrification.	50 (13)	

Iowa Strategy to Reduce Nutrient Loss: Phosphorus Practices

Practices below have the largest potential impact on phosphorus load reduction. Corn yield impacts associated with each practice also are shown, since some practices may increase or decrease corn production. If using a combination of practices, the reductions are not additive. Reductions are field level results that may be expected where practice is applicable and implemented.

	Practice	Comments	% P Load Reduction ^a	% Corn Yield Change ^b
			Average (SD°)	Average (SD ^c)
	Phosphorus Application	Applying P based on crop removal – Assuming optimal STP level and P incorporation	0.6 ^d	0
		Soil-Test P – No P applied until STP drops to optimum or, when manure is applied, to levels indicated by the P Index $^{\rm f}$	17°	0
ement ¹	Source of Phosphorus	Liquid swine, dairy, and poultry manure compared to commercial fertilizer – Runoff shortly after application [‡]	46 (45)	-1 (13)
lanage		Beef manure compared to commercial fertilizer – Runoff shortly after application [‡]	46 (96)	
orus M	Placement of Phosphorus	Broadcast incorporated within 1 week compared to no incorporation, same tillage	36 (27)	0
Phosphorus Management [‡]		With seed or knifed bands compared to surface application, no incorporation	24 (46)	0
	Cover Crops	Winter rye	29 (37)	-6 (7)
	Tillage	Conservation till – chisel plowing compared to moldboard plowing	33 (49)	0 (6)
		No till compared to chisel plowing	90 (17)	-6 (8)
	Perennial Vegetation	Energy Crops	34 (34)	
Land Use Change		Land Retirement (CRP)	75	
		Grazed pastures	59 (42)	
rol ield	Terraces		77 (19)	
Cont of-F	Buffers		58 (32)	
Erosion Control and Edge-of-Field	Control	Sedimentation basins or ponds	85	
Ero and	Blind Inlet	Sediment control	50	

Increased organic matter in soil, less erosion, fewer weeds, and even more beneficial insects

PUBLISHED ON AUGUST 16, 2017

Cover crops incorporated into a cash-crop rotation. (Courtesy of AgSource Laboratories)

What Has My Data Reveled?

Organic Matter % Change Over Time

Incremental Value of 1% (10 Tons) Soil Organic Matter (IA, NRCS)

- Enhanced water availability (20/80 rule)
 \$18
- Mineralizable N and P

• \$11

Total value per 1% organic matter

• \$29

Value Our Farm (2.5% OM Change)

• \$72 (Capitalized?)

What else have we learned from the study of 17 years of yield data on 10 different fields?

Dr. Jerry Hatfield, USDA ARS, Ames, IA

Data Availability

- Yield monitor data from 2003 to 2018
- Soil maps for each field
- Weather data
- Soil organic matter across fields and years

April - Sept. Rainfall

Data Analysis

Means and standard deviations of yield data by field and year

- Skewness and kurtosis of yield data segregated by soil within field
- Geospatial analysis to quantify field variability
- Water use efficiency

Corn Yields relative to Mitchell County

Wayne's Whole Farm Corn Yields vs County Average

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

-COUNTY ----WAYNE

0.00

Soybean Yields relative to Mitchell County

Wayne's Whole Farm Soybean Yields vs. County Average

Increasing Uniformity

Skewness -1.01 Kurtosis 2.30 Skewness 0.19 Kurtosis 4.48

Soil 394 Ostrander Ioam

Increasing Uniformity

2017 Corn: Soil 761 2005 Corn: Soil 761 1000 120% 600 120% 900 100% 500 100% cent 800 700 400 300 200 80% 80% mulative Per requenc) 600 60% 500 60% 400 40% 40% 300 С С 100 20% 200 20% 100 0% 228] 132] 156] 180] 204] 252 276 300 324 0% 36 60 84 08 348 More 12 8th , 00 , 3t , 5b 152 16 30 32A 20A 220 6 ~%) "3ADNOTE 2 nb Yield (bu/ac) Yield (bu/ac)

Skewness -1.99 Kurtosis 2.21 Skewness -0.86 Kurtosis 7.91

Soil 761 Franklin silt loam

Implications

Position of mean median mode

Kurtosis

Skewness

Implications

- The shifts from negative to positive skewness and increasing kurtosis tightens the distribution about the mean
- The more we shift to the right the greater the income in the field because we have less low yielding areas in the field, i.e., a greater portion of the field becomes a profit center

Geospatial Analysis

Results

- Fields have become more uniform and the values of the yield monitor observations are more closely correlated across the field
- Increase in uniformity across the field with time
- Only in extreme years (2012) was there a lack of uniformity

2012 Corn: Soil 761

Implications of the changes in soil

- Yield is negatively correlated with April and May rainfall at the county level
- Yield is positively correlated with July-September rainfall at the county level
- Water use efficiency (corn) Fredericks fields
 - 2004 3.9 bu/inch 2018 5.5 bu/inch 41% increase
 - 2005 5.3 bu/inch 2017 7.9 bu/inch 49% increase
- Water use efficiency (soybean)
 - 2005 1.9 bu/inch 2017 2.4 bu/inch 26% increase
- Profitability of the field will increase because the yields have become more uniform.

Changes in water use efficiency

- Soil is capable of storing more water
- Greater infiltration of rainfall events
- More resilient in the years with uneven distribution of rainfall
- Reduction in the correlations with excessive spring and deficit summer rainfall
- Increased ability to convert the soil water into grain

Lessons Along the Journey

- Change the uniformity of the field with the combination of reduced tillage and cover crops
- Observe a shift in the distribution of yields around the mean to fewer lower yields and tighter distribution around the mean
- Increases in organic matter are coupled with change in water infiltration and availability
- Cultural operations are more timely because of improved soil conditions
- Fields become more resource use efficient, light, water, and nutrients
- Management is dynamic and there is constant adaptations and tweaks

Conversion from Conventional to No-till Cover Crop

Dry Aggregate Size Distribution

At each sampling location: -1.2 m deep core -5,10 cm surface sample

Gridded soil sampling

Conversion to no-till w/cover crop

Doubled the microbial biomass in two years after conversion

Changed from negative to positive carbon balance in this two year period

Systems

Genetics x Environment x Management

- Oversee (M) to overcome (E) to optimize (G)
- Sometimes the genetics don't respond the way we expect
- There needs to be constant attention to the nutrient management
- Management has to evolve to take advantage of the changing soil conditions

What are the Implications?

- How does this reduce risk and increase management options?
- Can this affect land values?
- What might this do to rental agreements?
- Could this broaden the offering of crop insurance discounts?
- How does this change the discussion of carbon sequestration?
- Can this create more engagement from the food industry?
- How might this affect state and federal farm policy?
- Can this lift the burden of water quality and quantity?
- Can these practices make farming more profitable?

herminutomo www.fotosearch.com