

A Decade of Cover Crop Research

retrospection on key lessons learned Dr. Joel Gruver WIU - School of Agriculture

Inputs:Outputs

Costs:Benefits

What does BALANCED mean to you?

Work:Play

Ca:Mg

THE MISSOURI PLAN (BALANCED FARMING)

J. W. BURCH 1947 University of Missouri

HE Missouri Extension Service taught individual farm practices, as did all state colleges, until 15 years ago when the need became apparent for a system of farming that would tie together all of the good practices recommended by the college for a farm in a way to give the greatest net income consistent with continuing improvement of the soil. Throughout the years certain farmers have specialized in beef cattle production and perhaps failed to improve their pastures, and others specializing in crop production failed to receive high net income because of poor feeding practices. The college, with its traditional 12 to 14 departments and Extension specialists for each, undertook to save the farmer by teaching the individual practices, leaving it to the county agent or the farmer to tie these practices together, if any attempt along that line was made.

PFI = balanced!

FIELD DAY GUIDE

Carlson, S. 2013. Winter rye cover crop effect on grain crop yields: Year 4. Practical Farmers of Iowa.

IA Soybean Association's On-Farm Network[®] Replicated Strip Trial Database

Year	Crop	Trial Type and Detail				
All Years 📥	All Crops 🛛 📐	All Trial Types	All Trial Details 📃 🔼			
2014	Corn	Cover Crop	Cereal Rye vs Untreated			
2013	Soybeans	Crop Management	Fall Cover Crop Mix vs Untreated			
2011		Crop Management - Planting Date	Rye vs Untreated			
2008		Crop Management - Population	Tillage Radish vs Untreated			
		Crop Management - Roller	TillageMax CHARLOTTE mix vs Untreated			
		Crop Management - Row Spacing	TillageMax DOVER mix vs Untreated			
×	~	Crop Management - Tillage	TillageMax INDY vs Untreated 🛛 💽			

Location

<u>Year</u>	<u>Landform</u> <u>Region</u>	<u>Crop</u> District	Watershed	<u>County</u>	Crop	<u>Trial</u> Type	<u>Trial Detail</u>	<u>Avg. Yield</u> Difference bu/acre
2008	Des Moines Lobe	5 (Central)	Middle Des Moines	Boone	Corn	Cover Crop	Rye vs Untreated	-15.8
2008	Southern Iowa Drift Plain	7 (South West)	One Hundred and Two	Adams	Soybeans	Cover Crop	Rye vs Untreated	1.6
2011	lowan Surface	6 (East Central)	Maquoketa	Jones	Corn	Cover Crop	Rye vs Untreated	1.2
2013	Des Moines Lobe	5 (Central)	Middle Des Moines	Dallas	Corn	Cover Crop	Tillage Radish vs Untreated	4.0
2013	Des Moines Lobe	5 (Central)	Middle Des Moines	Dallas	Corn	Cover Crop	TillageMax CHARLOTTE mix vs Untreated	0.0
2013	Des Moines Lobe	5 (Central)	Middle Des Moines	Dallas	Corn	Cover Crop	TillageMax DOVER mix vs Untreated	7.0
2013	Des Moines Lobe	5 (Central)	M Simila	ar me	essag	e ^r	TillageMax TALLADEGA mix vs Untreated	-6.2
2013	Des Moines Lobe	5 (Central)	South Skunk	Polk	Corn	Cover Crop	Tillage Radish ∨s Untreated	7.7
2013	Des Moines Lobe	5 (Central)	South Skunk	Polk	Corn	Cover Crop	TillageMax CHARLOTTE mix vs Untreated	-4.1
2013	Des Moines Lobe	5 (Central)	South Skunk	Polk	Corn	Cover Crop	TillageMax DOVER mix vs Untreated	3.2
2013	Des Moines Lobe	5 (Central)	South Skunk	Polk	Corn	Cover Crop	TillageMax TALLADEGA mix vs Untreated	-11.4
2013	lowan Surface	2 (North Central)	Upper Cedar	Mitchell	Soybeans	Cover Crop	Rye vs Untreated	0.5
2013	lowan Surface	3 (North East)	Upper Wapsipinicon	Chickasaw	Corn	Cover Crop	Tillage Radish vs Untreated	4.1

The WIU/Allison Organic Research Farm is located in southern Warren County, ~ 15 miles north-west of Macomb

Andy Clayton

Collaboration with neighboring farmers is essential

1910

Sometimes you just have to use what you have 🙂

1.183

He's visited the farm at least a dozen times!

00

I am transitioning to organic with my eyes wide open!

Teaching undergrads is my # 1 mission

Students help me learn about CC innovation

WIU Organic Research farm

Fall 2012

Spring 2012

Student's home farm the next fall

Western Illinois University

Higher Values in Higher Education • Macomb • Quad Cities

WIU Home > CBT > Agriculture > Farms > Organic

Allison Organic Research & Demonstration Farm

In 1989, the Agriculture Department at Western Illinois University identified a historically pesticide-free, limited-fertilizer, 80-acre farm located near the WIU campus. From 1989 through 2002, we have completed systematic sampling and characterization of many chemical, physical, and biological properties of these Sable-Muscatine soils, with the cooperation of scientists from several Contact Information Quick Links

- 2016 Field Day
- Economics
- MarketsResearchResources
 - Agri-Tourism Award

Organic Research Projects

All the reports below are PDF files. Please <u>contact the School of</u> <u>Agriculture</u> if problems occur when accessing these documents. We will provide site content in a format you can use.

Organic Fertilizers/Soil Amendments

<u>Nature Safe</u> [®] 13-0-0 Organic Dry Fertilizer Study Organic Dry Blended Fertilizer Study Soybean Yield Response to Hog Manure Application SumaGrow Study Humate/Fertility Study Oat Yield Summary and Allganic[®] Nitrogen (16-0-0) Trial

Variety/Hybrid Trials

2015 Soybean Variety Trial at Conventional Site

2014 Soybean Variety Trials

2013 Soybean Trials (Yield Summary)

2012 Corn Hybrid Trial

Ca mg16slideshare 2 months ago 1,232 views

Integrating CC in Strip-Till ... 1 year ago 1,472 views

Som2015 1 year ago 1,470 views

Quincy2015pptx 1 year ago 792 views

~ 100 presentations available on SlideShare

Value of Cover Crops 2 years ago 1,099 views

Hybrid corn2014new 2 years ago 1,644 views

Precision Cover Cropping for ...

2 years ago 2,503 views

Cover Cropping Practices that...

2 years ago 3,956 views

Maximizing crop root growth i...

Potassium2013new 3 years ago

Adopting Cover Crop Systems

Understanding Soil Organic Ma...

Radishes – A New Cover Crop for Organic Farming Systems

Organic Agriculture

February 26, 2016

eOrganic authors:	Dr. Joel Gruver, Western Illinois University
	Dr. Ray R. Weil, University of Maryland
	Charles White, Penn State University
	Dr. Yvonne Lawley, University of Manitoba

Over the past decade, radishes have been redefined; once known almost exclusively as a pungent vegetable, radishes have recently gained recognition for their cover cropping potential. After reading this article, you'll be able to make an informed decision about whether cover crop radishes are worth a try on your farm.

Radishes have made rapid inroads as a cover crop for several reasons. First, the radish phenotype is well suited to perform many valuable cover crop functions—provide soil cover, scavenge nutrients, suppress weeds, and alleviate compaction—while creating few of the residue management challenges associated with many other cover crops. Second, recent research including many on-farm trials has documented beneficial effects of radish cover crops on soil properties and subsequent

Mechanistic research by co-authors of e-Organic radish article

REGULAR ARTICLE

Penetration of cover crop roots through compacted soils

Guihua Chen · Ray R. Weil

Received: 23 July 2009 / Accepted: 3 November 2009 / Published online: 19 November 2009 © Springer Science + Business Media B.V. 2009

Abstract Tap-rooted species may penetrate compacted soils better than fibrous-rooted species and therefore be better adapted for use in "biological tillage". We evaluated penetration of compacted soils by roots of three cover crops: FR (forage radish:

Raphanus sativus var. rapeseed (Brassica napi species in the Brassica Secale cereale L., cv. species. Three compact

soil penetration capabilities radish > rapeseed > rye

p · Root penetration · action

no compaction) were created by wheel trafficking. Cover crop roots were counted by the core-break method. At 15–50 cm depth under high compaction, FR had more than twice and rapeseed had about twice as many roots as rye in experiment 1; FR had 1.5 times as many roots as rye in experiment 2. Under no compaction, little difference in root vertical penetration among three cover crops existed. Rapeseed and rye

Introduction

Poor plant growth and reduction of crop yields due to soil compaction have been recognized as early as plowing was practiced and encouraged (Bowen 1981). Soil compaction is known to restrict plant root growth, reduce water and nutrient uptake, and thereby impede plant development (Carr and Dodds 1983; Ishaq et al.

root counts were negatively related to soil strength by

linear and power functions respectively, while FR roots

showed either no (Exp.1) or positive (Exp. 2) relationship with soil strength. We conclude that soil

penetration capabilities of three cover crops were in the

Contents lists available at ScienceDirect

Soil & Tillage Research

journal homepage: www.elsevier.com/locate/still

Root growth and yield of maize as affected by soil compaction and cover crops

Guihua Chen^{a,b,*}, Ray R. Weil^b

* Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA

^b Department of Environmental Science and Technology, University of Maryland, 1109 H.J. Patterson Hall, College Park, MD 20814, USA

ARTICLE INFO

Article history: Received 1 April 2011 Received in revised form 29 July 2011 Accepted 1 August 2011 Available online 27 August 2011

Keywords:

Brassica cover crops Bio-drilling Root penetration No-till

A B S T R A C T

The yield of rainfed crops is commonly limited by the availability of soil water during the summer growing season. Channels produced by cover crop roots in fall/winter when soils are relatively moist may facilitate the penetration of compacted soils by subsequent crop roots in summer when soils are relativ ıys) Our data suggest that surface mulch and deep root channels growth ion. The st DUS, left by winter cover crops can be advantageous for summer Psamn гор crop growth, particularly when soils are highly compacted. treatm sica napus, der Tap-rooted forage radish and rapeseed cover crops ICC. high c tion Howev enhanced corn root access to subsurface soil water by levels a ıtly providing deep root channels in compacted soils texture no ults compa sugges best

availability or surface soil water, rapeseed tended to provide both benefits. However, as rapeseed is relatively difficult to kill in spring, a mixture of FR and rye cover crops might be most practical and beneficial for rainfed summer crops under no-till systems in regions with cool to temperate, humid climates.

© 2011 Elsevier B.V. All rights reserved.

Impact of preceding cover crops on cash crop root density

Chen and Weil (2011)

Cover crops as management tools

There are many windows of opportunity for CCs

Every year	Dormant seeding early or late winter
Tried at least o	once Frost seeding
Never tried	When planting summer crops
@ the WIU Organic	Prevent plant scenarios
research farm	After weed-free window (early intercropping)
	After small grains
	After early harvested vegetables
	After seed corn or silage corn
• Ae	rial or high clearance seeding into standing crops in late summer/early fall
	After early corn/bean grain harvest
	After full season corn/bean grain harvest

Frost Seeding Red Clover in Winter Wheat

Jim Stute, University of Wisconsin (UW) Extension, Rock County Kevin Shelley, UW Nutrient and Pest Management Program

Grow your own nitrogen

If you plant winter wheat, you have an opportunity to "grow" your own nitrogen (N) to help manage input costs and accrue soil quality benefits. The age-old practice of green manuring, especially in conjunction with

wheat next y cost s grams Multithat re tive at if inte 1). Int seaso clover more shorte growt tion w

orn the Frost seeded tible for prored clover is a more reliable producer of ed oducbiomass and fixer of ng able wing N than legume CCs eeding est is planted after small s and a d slow grain harvest producrainfall

in August is critical for producing acceptable yield for summer seedings (figure 1). Red clover offers the additional advantage of being a non-host for soybean cyst nematode, a problem with many of the other legume cover crop options. Table 1. Above ground biomass yield for cover crops seeded with or after winter wheat in Wisconsin, 1991-2008. Various sources, published and unpublished data from WI, 1991-2008.

The second second		Site Years of Data
(tons/a)	Range	
1.70	0.33 - 3,26	24
vest		
1.37	0.67 - 2.16	10
0.83	0.69 - 0.97	2
1.00	0.31 - 1.58	9
ver 0.88	0.18 - 1.72	3
1.00	0.51 - 1.94	8
0.49	0.39 - 0.59	2
0.39	0.38 - 0.40	2
	Biomass Yield Me (tons/a) vest 1.37 0.83 1.00 /er 0.88 1.00 0.49	1.70 0.33 - 3.26 vest 1.37 0.67 - 2.16 0.83 0.69 - 0.97 1.00 0.31 - 1.58 ver 0.88 0.18 - 1.72 1.00 0.51 - 1.94 0.49 0.39 - 0.59

*N yield does not necessarily correspond to creditable N.

Figure 1. Impact of August rainfall on clover biomass yield. Stute, 2009

Red clover in September. In addition to nitrogen credits, it provides season-long soil cover.

Figure 2. Nitrogen distribution in unharvested red clover biomass.

Wisconsin data suggest that approximately 70% of whole-plant N will become available in the first year following clover, most released before corn begins its period of rapid uptake.

Figure 3. Relationship between clover nitrogen release and corn nitrogen uptake under conventional tillage. Adapted from Stute and Posner (1995) Agron. J. 1063-1069.

Soybean health experiment – multiple locations across IL

November 2010

Publication in press

Mustard Rapeseed Canola Cereal rye Cereal rye no-till

incorporated pre-plant

Soybeans no-till drilled into cereal rye were the top yielder in 2011

Abstract:

Field trials were conducted from 2010 to 2013 at four locations in Illinois to evaluate the impact of cover crops (cereal rye (Secale cereale), brown mustard (Brassica juncea), winter canola (Brassica napus), and winter rapeseed (B. napus) on soybean (Glycine max) stands and yield, diseases, pathogen populations, and soil microbial communities. Cover crops were established in the fall each year, and terminated the following spring either by using an herbicide (no-till farms), by incorporation (organic farm), or by an herbicide followed by incorporation (research farm). Although shifts in soilborne pathogen populations, microbial community structure were not detected, cover crops were found to induce general soil suppressiveness in some circumstances. Cereal rye and rapeseed improved soybean stands in plots inoculated with *Rhizoctonia* solani and decreased levels of soybean cyst nematode in the soil. Cereal rye increased soil suppressiveness to R. solani and Fusarium virguliforme, as measured in greenhouse bioassays. Cereal rye significantly improved yield when **Rhizoctonia root rot was a problem**. Using cover crops repeatedly, in the same field, may achieve more distinct effects on suppressing soybean diseases and buildup beneficial properties in the soil.

Mustard variety trial at the Allison farm in early June 2011

THE PART

Pacific Gold

Slower to mature

More biomass

Ida Gold

All All and a state of the stat

Faster to mature

Less biomass

Forage brassica comparison

AND AND A

11.12.80

A State of the second

Ethiopian cabbag

Turnip-kale cross Most winter hardy

Winfred

Not all ARG varieties were winter hardy

Annual ryegrass variety trial at the Allison farm November 2010

Bruiser, Bounty and KB Royal had the most top growth

ARG = excellent tolerance of wetness

> 36"
Radish roots at ~ 40" after 45 days

W

PHACELIA

PHACELIA

Very dense rooting at the soil surface

PHACELIA

Rapid improvement of soil crumb structure Crimson clover Chick peas

Green lentils We have grown demo-plots of lots of other species

Fava beans

Impact of winter-killed cover crops on *in-row* soil test P and K

Mustard

Inter-row soil test P - 56 In-row soil test P - 60 Inter-row soil test K - 482 In-row soil test K - 1014

Tillage Radish

Inter-row soil test P - 62 In-row soil test P - 78 Inter-row soil test K - 372 In-row soil test K - 948

Oat

Inter-row soil test P - 60 In-row soil test P - 72 Inter-row soil test K - 384 In-row soil test K - 538

Phacelia

Inter-row soil test P - 72 In-row soil test P - 84 Inter-row soil test K - 454 In-row soil test K - 506

All #s are lbs/a Mehlich 3 extractable nutrients as reported by Key Agricultural Services here in Macomb, IL

Wheat + radish trial at the Allison farm November 2010

3 lb/a = 2 lb/a = 1 lb/a > 0 lb/c~ 2.5 bu/a yield boost

Its unclear if this is a nutrient effect

A little extra N can make a big difference

+20 lbs N/a

2x biomass

No radish

2012 Preceded by spring planted radish

Water depletion by the radishes seems likely to have been the primary cause of severe soybean stunting

Moisture depletion in the spring is normally a good thing on this poorly drained farm

Impact of added N on radish study

5" of rain shortly after planting => no effect of added Chilean nitrate

Beneficial insect habitat strips along edges of most fields

Mixes of left over CC seed – always include buckwheat

Pero!

Thinning radish for a population study

AKA making lemonade out of a mistake (reversing the drive and driven) ☺

The full seeding rate (~ 11 lbs per acre, ~16 seeds per foot) ended up producing the most root and shoot biomass

4" of warm gentle rain the week after planting! results would probably have been different if moisture had been limiting

A 30' wide strip drilled at >400k!!!

Another mistake that had educational value

Planting into poorly digested red clover residues

25-50% stand loss Near perfect stands in all other corn plots on the farm

Planting into a furrow => good germination during a very dry June and excellent in-row weed control

> Planting into a furrow would probably have prevented the situation shown on the previous slide

Annual ryegrass after chisel plowing

Chisel plowing made the next pass with a rotavator easier and more effective

Terminating spring planted oats with a soil finisher ~3 weeks before planting corn

Spring planted mustard/pea/oat mix ahead of corn

No negative effects on corn germination

terminated with a Howard rotavator

Public

(Mis) adventures in Organic Strip-till Some plots had a low rate of NS 13-0-0 delivered into the strip And with

Some parts of the field had a good stand of red clover

Other parts of the field had a poor stand of red clover

Inter-row cultivation was delayed by a multi-inch rain

Inter-row cultivation killed most of the inter-row weeds but limited flow of soil into the row failed to bury many in-row weeds

Too much weed pressure in the row!

Plot yields averaged ~120 bu/a vs > 170 bu/a average for other corn plots in 2014 Much better stand of red clover in fall 2014

Nice strips made by Yetter Mavericks

Planting radish on strips

Filling in where chain broke on planter

Radish established well but red clover was highly competitive

Mowed to reduce competition

In some plots, red clover was suppressed by 1 or 2 cultivations in October and November

In some plots, red clover and radish were by terminated by rotavation in November

The next spring a beautiful stand of corn received ~ 25" of rain in June and July

A very promising bio-strip till experiment compromised 😕

Small-scale testing of bio-strip till concepts

Precision planted lentils + radishes

Precision planted peas + radishes

Precision radishes w/o peas

Precision planted radishes w/ peas

ALC: NO

w/peas => significantly more radish root mass

Future attempts at organic striptill will probably use this approach

Far less stimulation of weed germination in-row

Success w/ no-till organic soybeans

Early July 2009

Organic No-till research at the Allison Farm

Soybeans drilled after rolling 5' tall cereal rye

a Ito Cart

Rye was rolled with a cultimulcher

Early August 2009

Early November 2009

Plot yields ranged from 51.6 to 58.6 bu/ac

No significant differences between NT, CT and bio-strip-till systems

November 2010

Significant foxtail pressure but almost no broadleaf weeds

Plot yields ranged from 42-52 bu/ac

15' wide roller built by a local farmer used in 2010 and 2011

Mid-June 2011

Rolled after drilling

Early July 2011

November 2011

14 Al and Start Start And Similar the war

The NT bean plots yielded ~10 bu more than the best tillage system plots

April 2012

Station of the local division in which the local division in the l

Planting into 5-6' tall rye on May 11 2012

shall all he

An Munchelly

Comparison of single drilled vs double drilled with 4" offset

All of July :-<

Our 2012 NT bean yields ranged from ~ 30 to ~ 60 bu/a

Wet hole yielded very well

Better drained areas of the field yielded poorly

We decided not to plant any NT soybeans in 2013 & 2014 after observing weak/variable stands of rye in the spring

Rye had been drilled at inadequate rates in mid-late November

Double drilled NT soybean variety trial in 2015

NT soybeans survived the deluge and are finally growing fast

Later maturing soybean variety (BRH 39C4) is greener

BRH 34A7 plots averaged 62 bu/a vs. 66 bu/a for BRH 39C4

5/29

BRH 34A7 vs BRH 39C4 NT soybeans planted on 5/30

2016

Early June

Early July

~ 4 plants per square foot

12.8-0

11/9

Both varieties (34A7 & 39C4) averaged just over 70 bu/a
Right after drilling rye for 2017 NT soybeans 15" vs 30" vs 30" w/ high residue cultivation planned for this field

~ 1 month later

24

May 2016

rye/oat/pea/mustard mix preceding pumpkins

Rye is volunteer from NT soybeans in 2015 Oats, peas and mustard were planted second week of March

~4 months later

CC roots under a pumpkin!

Attempt #1

Adventures in bio-strip till

September 2008

Fall 2009

an Post &

Attempt #2

Attempt #3

Radish planted on 30" rows using small milo plates in mid-August 2010

Corn following cover crop experiment (2011)

Corn planted over radish rows w/o GPS guidance

Radishes in fall 2011

SLOK A

May 2012

+20 bu/a corn in plots w/ fall cultivation of radish vs. no fall cultivation???

Radish planted on 30" rows with RTK guidance on August 29 2012 right before Hurricane Isaac rolled in

4 days later

10 days after planting

THE

A B CALL AND CALL DO

Why are the inter-rows so clean?

We had just cultivated some of the radish plots!

Organic bBio-strip till has shown promise but yield effects have been variable

Availability of nutrients to following corn crop seems to be inconsistent

Effort to add radish to established CC may exceed benefit

Extreme weather compromised our most promising attempts at bio-strip till

We are finally taking multispecies CC mixes seriously

Sunn hemp/sunflower/oat/radish/mustard mix planted 8/15/16 following peas

Cereal rye @ ~ 12 lbs/a

CC mix (peas, oats, mustard, phacelia???) will be drilled in early spring 2017

CT vs NT pumpkins planned for summer 2017

It was very easy to adjust rates

0

GREEN COVER SmartMix Calculator http://www.greencoverseed.com/

Use the <mark>yellow area to select</mark>			C:N Ratio (mature growth estimate) 24			N Fixing Potential (scale of 1-10) 4.5			Diversity Rating (scale of 1-10) 4.5		Frost Tolerance (scale of 1-10) 2.3	
your seed and your seeding rate per acre. Use the drop down boxes to select the species you want to include.		* Full Rate	lbs per acre	Season	% by weight	% by # seed	% by cost	Seeds/lb	Seeds per acre	Cost per pound	Cost 1K seed	Cost per acre
TOTALS			18						250,000			\$16.95
Legumes			1		72%	34%	78%					\$13.25
Cowpeas -	Info	30-50	10	WS-B	56%	16%	38%	4,100	41,000	\$0.65	\$0.159	\$6.50
Sunn Hemp 💌	Info	14-20	3	WS-B	17%	18%	40%	15,000	45,000	\$2.25	\$0.150	\$6.75
	Info											
	Info											
Grasses					11%	56%	9%					\$1.60
Pearl Millet	Info	10-14	2	WS-G	11%	56%	9%	70,000	140,000	\$0.80	\$0.011	\$1.60
	Info									Į.		
	Info					Î						
Brassicas					0%	0%	0%					\$0.00
	Info											
	Info								-			
	Info											
Other Broadleaves			-		17%	10%	12%					\$2.10
Sunflower	Info	15-25	3	WS-B	17%	10%	12%	8,000	24,000	\$0.70	\$0.088	\$2.10
	Info											
Add your own seed and seed co out not in the Green Cover Seed			below. Tota	ls will be	reflected i	n grand tot	als at top	Gree	n Cover Sm	nartMi	total:	\$16.95
									A PARTY AND A PARTY AND		mixing:	\$0.00

Home Resource Areas eXtension.org

Making the Most of Mixtures: Considerations for Winter Cover Crops in Temperate Climates

Organic Agriculture

May 05, 2016

Contents

- Introduction
- Tailoring a Cover Crop to Farm Management Objectives
- Top 7 Reasons Farmers Use a Cover Crop Mixture
- How to Make a Cover Crop Mixture
- Building a Complementary Mix
- Weed Suppression with Cover Crop Mixtures
- Cover Crop Mixtures Adjust to Climate and Nitrogen Availability
- Too Many, Too Few? How Many Species are Just Right
- Methods to Establish Cover Crop Mixtures
- Example Seeding Rate Calculation
- Considerations when Terminating Cover Crop Mixtures
- Conclusions and Additional Resources

Introduction

Cover crops can provide multiple benefits. For example, they can improve soil health, supply nutrients to cash crops, suppress weeds, help manage insect pests, produce forage, support pollinators and beneficial insects, and reduce water and air pollution. However, not all cover crop species provide the same benefits. How can you best reap the multiple benefits of cover cropping with so many species to choose from? To multiply and diversify your cover crop benefits, plant mixtures.

Lots of interesting things happen in mixtures

Cowpea fixed more N when intercropped w/Japanese millet

Cover crop species	% N from fixation	Total N fixed (Ibs/ac)
Cowpea	39	37
Cowpea + Japanese millet	72	59
Cowpea + SorgumSudan	56	26

