Soil-Test Biological Activity – A Tool for Soil Health Assessment

Alan Franzluebbers Ecologist, Raleigh NC

United States Department of Agriculture

NC STATE

UNIVERSITY

Crop & Soil

Sciences

Agricultural Research Service

"We might say that the earth has the spirit of growth; that its flesh is the soil"

- Leonardo da Vinci

"We are part of the earth and it is part of us ... What befalls the earth befalls all the sons of the earth"

- Chief Seattle

"Essentially, all life depends upon the soil ...there can be no life without soil and no soil without life; they have evolved together"

- Charles E. Kellogg

Soil Health Science: Focus on Function

Producing plants and food

Supplying water, nutrients, and plantgrowth promoting compounds

> Enabling animal habitat

Cycling nutrients **Storing C and N**

Buffering against toxic accumulation Protecting water quality

Filtering

elements

Providing physical stability

Serving as

reservoir of

biodiversity

Soil quality / health

23

Soil quality is soil health

Properties and processes that relate to soil function, including

- **O** Decomposing organic matter
- Cycling water and nutrients
- \circ Controlling gas emissions
- **o** Harboring biodiversity

There's a problem...

N₂O

fossil-fuel energy

Nitrogen is the most limiting plant nutrient

Understanding how much to apply should be easy...

The reality

0.5N=0

There's a problem...

N₂O

fossil-fuel energy

Soil-Test Biological Activity

Supplying water, nutrients, and plantgrowth promoting compounds

> Enabling animal habitat

Cycling nutrients Producing plants and food

Serving as reservoir of

reservoir of biodiversity

Storing C and N

Buffering against toxic accumulation Protecting water quality

Filtering

elements

Providing physical stability

What is soil biology

Surface residues important

Fueling soil biological activity

Roots important

What do soil organisms need?

- ✓ Suitable habitat
 - Something to hold onto
 - Water
 - Oxygen
 - Balanced pH
- Carbon sources to consume
- ✓ Access to nutrients

Fractions of soil organic carbon

Total Organic C

Particulate Organic C

Slow

Active

Plant

Residue C

SMBC

CMIN

Nitrogen and carbon mineralization have a complex relationship in the short-term...

Residue added (rich in C)

Relative Microbial Activity or Nitrate Concentration

Soil microbial activity biologically sequesters N into organic matter

The narrow window of opportunity...

Soil organic C and N are closely associated in the long-term

Soil Organic Carbon Accumulation (Ib C / acre / year)

Franzluebbers and Stuedemann (2010) Soil Sci. Soc. Am. J. 74:2131-2141

Questions?

...most farm fields will be in some steady-state condition due to family-farm management

Thus, balancing the short- and longterm effects

Franzluebbers et al. (1995) Soil Sci. Soc. Am. J. 59:1618-1624

Soil process relationships

Franzluebbers et al. (1999) Soil Sci. Soc. Am. J. 64:613-623

The flush of CO₂ following rewetting of dried soil

RESPIRATION TEST SYSTEMS

Son compose manare oran blog store

Soil Biological Responsiveness

Test for Soil CO₂ Respiration reveals Soil Biomass and N-Mineralization Potential

A NEW CATEGORY OF SOIL TESTING

Solvita is an important new soil test which measures soil microbial respiration in a modified static-flux system.

Soil respiration represents the biological energy inherent in soil systems. While it has become customary to ignore soil biology in fertilizer and fertility budgets, this recurring cycle of respiration represents the absorption and release of massive amounts of carbon which is increasingly recognized to be tied to the productivity of flora and vegetation.

One significant form of this biology are **correveals** the soil's underlying are natural events and which comprise biological and sustainable yield to microbes and nutrients to growing planes of soll of the soil's underlying biological and sustainable yield method is to reveal the soil's underlying biological (and sustainable) yield component.

...possible to reduce nutrient inputs

By accurately measuring the magniturand improver yield sustainability mass and nutrient delivery potential. By factoring this information into nutrient budgets, it is possible to both reduce chemical inputs and to improve yield sustainability - hence improve net economic yield.

Variations in protocol...

Component	Soil Ecology & Mgt NC State	Haney Soil Health Test	Solvita – Woods End	Cornell CASH
and and any the	A DE A	The Road and a second	the the set	A WITH THE M
Soil	55 °C 3 days,	50 °C 1 day, sieved	Shipped wet;	Shipped wet; air
nrocessing	sieved <4.75 mm	<2 mm	dried, roller	dried, sieved <8
				mm
ALL STATES IN	The Barrow is	A MARLEN HALL REALLY	the second second	This advantion of
Soil weight	Two 50-g	40 g	40 g	20 g
	subsamples			
and the set that	A STATISTIC A	10 2 1 1 C 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	ALAN T	at the second and the second
Water	50% WFPS in two	Capillary from	From top to 50%	Capillary from
	60 mL bottles	bottom to	WFPS; previously	bottom to
		saturation	from bottom	saturation
NO STRUCTURE	Distant Marsh	MARCH STORES	AN MARKEN	A. P. M. X 1315
Incubation	3 days at 25 °C in	1 day at 25 °C in	1 day at room	4 days at room
Incubation	1-l iar	0 25-L jar	temperature in	temperature (?) in
		0.25 L jui	0.25 l jar	
2201 4 20	11 20 1 1 1 1 1 1 1	22 A.B	0.23 ⁻ L Jai	0.5-2 jai
	Acid titration of 1	Infrarad gas	Col poddlo with	Floetrical
CO ₂ detection		inirared gas	Gel paddle with	
	IN NAUH trap to	analysis of	digital color	conductivity of 0.5
	phenolphthalein	headspace	reader	M KOH trap
	endpoint			

The flush of CO₂ is an indicator of soil microbial activity

Data from Franzluebbers et al. (2007) Soil Till. Res. 96:303-315

The flush of CO₂ relates well to soil microbial biomass C 1500 SMBC = 162 + 2.45 * Flush $r^2 = 0.76$ 1200 Kansas Soil 900 **Microbial** Georgia **Biomass C** Michigan 600 (mg[·]kg⁻¹ soil) 300 0 100 200 300 400 500 Flush of CO₂ following Rewetting of Dried Soil $(mg CO_2 - C' kg^{-1} soil)_{0-3 d}$

Data from Jangid et al. (2008, 2010, 2011) Soil Biol. Biochem. 40:2843-2853; 42:302-312; 43:2184-2193

The flush of CO₂ shows association with N availability From multiple locations and depths within 61

Across all soll textures NMIN = 2.4 + 0.263*Flush r²=0.80, n=411

Data from M.R. Pershing (2016) NC State thesis

Not all fields have the same available N

Residual in profile

Biologically active

Consider this evidence...

Plant N uptake in semi-controlled greenhouse experiments

Plant dry matter production in minor relationship with total organic C

8 6 Plant **Dry Matter** 4 **Production** $(mg DM g^{-1} soil)$ 2 DM = 2.2 + 0.041 (TOC) $r^2 = 0.22$ 0 10 20 30 50 60 \mathbf{O} 40 70 **Total Organic Carbon** Soil from 30 sites in NC + VA (g C kg⁻¹ soil) (0-10, 10-20, 20-30 cm depths each)

Plant dry matter production with no relationship to humic matter

Plant dry matter production in moderate relationship with residual inorganic N

Plant dry matter production in strong relationship with net N mineralization

Plant N uptake in strong relationship with plant available N

The flush of CO₂ in strong relationship with plant available N

Questions?

Field calibration to N requirements

- Corn grain and silage in North Carolina and Virginia

Example of 3 strips fertilized with 0, 69, and 125 kg N ha⁻¹ at sidedress

Cost-return scenarios for calculation of econically optimum N rate (EONR)

Cost-to-Value Conditions	Threshold (Ib grain/Ib N)
Low N (\$0.50/lb N) and high grain (\$5.60/bu)	5

Low N (\$0.50/lb N) and low grain (\$2.80/bu)	10
High N (\$1.00/lb N) and high grain (\$5.60/bu)	10

High N (\$1.00/lb N) and low grain (\$2.80/bu)	20
--	----

Flush of $CO_2 = 230 \pm 6 \text{ mg/kg/3d}$

0.99 0.73 0.48

Flush of $CO_2 = 230 \pm 6 \text{ mg/kg/3d}$

0.99 0.73 0.48

Flush of $CO_2 = 446 \pm 24 \text{ mg/kg/3d}$

0.41 0.26 0.11

Flush of $CO_2 = 446 \pm 24 \text{ mg/kg/3d}$

0.41 0.26 0.11

Flush of $CO_2 = 315 \pm 47 \text{ mg/kg/3d}$

Yield data from across farms in NC and VA

Franzluebbers (2017) Unpublished data

Yield data from across farms in NC and VA

Intensity of yield response to N fertilizer

Intensity of yield response to N fertilizer

Intensity of yield response to N fertilizer

Adjustment of N per bushel of grain...

Total of 36 fields in NC + VA

Testing this relationship against new trials > 40 grain trials in NC and VA in 2017

Variable	All 40 trials	26 trials (>150 bu/a only)		
Observed maximum yield (bu/a)	174	167 – 248		
Soil-test biological activity (mg/kg/3d)	229	123 – 323		
Nitrogen factor (lb N/bu grain)	0.70	0.15 – 0.83		
Econ opt N fertilizer (lb N/a)	105 ┥	34 – 164		
Standardized N recommend (lb N/a)	191 🔶	184 – 263		
Yield with std N recommend (bu/a)	171	167 – 248		
STBA-predicted N recomm (lb N/a)	124 🦊	101 – 199		
STBA-predicted yield (bu/a)	166	162 – 248		
Yield difference with STBA (bu/a)	-5	-9 to +3		
Net return with STBA (\$/a)	+5.08	-10.88 to +56.34		

Greater economic return and less N applied/potentially lost

A potential N fertilizer recommendation framework

NR = 1.05 - 0.0015 * Flush 1.0 $r^2 = 0.29$ 0 n = 36 0.8 Sidedress Nitrogen 0.6 **Required to Achieve Optimum Corn Grain Yield** (Ib N/bu grain) 0.4 0.2 0.0 200 400 800 600 0 Flush of CO₂ (mg CO₂-C⁻kg⁻¹ soil)_{0-3 d} Very Low **Soil-Test Biological Activity**

NR = 1.05 - 0.0015 * Flush 1.0 $r^2 = 0.29$ 0 n = 36 0.8 Sidedress Nitrogen 0.6 **Required to Achieve Optimum Corn Grain Yield** (Ib N/bu grain) 0.4 0 0.2 0.0 200 400 800 600 0 Flush of CO₂ (mg CO₂-C⁻kg⁻¹ soil)_{0-3 d} Very Low Low **Soil-Test Biological Activity**

NR = 1.05 - 0.0015 * Flush 1.0 $r^2 = 0.29$ 0 n = 36 0.8 Sidedress Nitrogen 0.6 **Required to Achieve Optimum Corn Grain Yield** (Ib N/bu grain) 0.4 0 0.2 0.0 200 400 800 600 0 Flush of CO₂ (mg CO₂-C⁻kg⁻¹ soil)_{0-3 d} Very Low Medium Low **Soil-Test Biological Activity**

NR = 1.05 - 0.0015 * Flush 1.0 $r^2 = 0.29$ 0 n = 36 0.8 Sidedress Nitrogen 0.6 **Required to Achieve Optimum Corn Grain Yield** (Ib N/bu grain) 0.4 0 0.2 0.0 200 400 600 800 0 Flush of CO₂ (mg CO₂-C⁻kg⁻¹ soil)_{0-3 d} Low High Very Medium Low **Soil-Test Biological Activity**

NR = 1.05 - 0.0015 * Flush 1.0 0 $r^2 = 0.29$ n = 36 0.8 Sidedress Nitrogen 0.6 **Required to Achieve Optimum Corn Grain Yield** (Ib N/bu grain) 0.4 0 0.2 0.0 200 400 600 800 0 Flush of CO₂ (mg CO₂-C⁻kg⁻¹ soil)_{0-3 d} High Low Very Very Medium High Low **Soil-Test Biological Activity**

The flush of CO₂ as a predictive soil test

Incubating soil in sealed jar with alkali to absorb CO₂

Components

- \circ 1-L canning jar with lid
- Two 60-mL graduated bottles with 50 g soil wetted to 50% WFPS (***)
- One 30-mL screw-cap vial containing 10 mL of 1 *M* NaOH to absorb CO₂
- One 25-mL vial containing 10 mL water to maintain humidity

- ✓ One bottle pre-incubated for 10 days prior to CHCl₃ fumigation to estimate soil microbial biomass C
- ✓ One bottle incubated for 24 days to determine cumulative C and N mineralization

Published February 9, 2016

Agricultural & Environmental Letters

Research Letter

Should Soil Testing Services Measure Soil Biological Activity?

Alan J. Franzluebbers*

✓ Soil biological activity is a key indicator for productivity and environmental quality ✓ The flush of CO₂ possesses many qualities of a robust soil test ➢ Rapid

Inexpensive

Reproducible Background

Suitable for a wide range of soils
Correlating to nutrient needs of crops

wbs/bortal/nrcs/main/national/solls/nealth/), either gradually inrough nigh-

Thanks!

alan.Franzluebbers@ars.usda.gov