### Field Days Feature Local Energy

The new PFI Bioenergy and Diversity project hosted three field days in late summer 2008. The focus of this article is a biodiesel field day that was hosted on August 30 by Plainfield farmers Gary Laydon and Pat Mennenga and their neighbor Berl Biekert.

Kim Odden, an instructor at Wisconsin Indianhead Technical College, demonstrated his mobile oilseed press and presented budgets for producing oil from different seeds and turning it into biodiesel. These budgets help illustrate whether biodiesel is a viable option for farmers and which crops demonstrate the most potential. Pressing oil is the next stage for on-farm biodiesel, since used fry oil is now in short supply in many communities.

Oilseed crops differ greatly in the amount of oil produced per acre (see Table 1). An oilseed sunflower crop, for example, contains twice as much oil per acre as soybeans. On the other hand, the sunflower meal byproduct is too high

| Table 1. Oil Production           | n per Acre by  | Crop.†      |  |  |  |  |  |  |
|-----------------------------------|----------------|-------------|--|--|--|--|--|--|
| Crop                              | lbs oil/acre   | US gal/acre |  |  |  |  |  |  |
| corn (maize)                      | 129            | 18          |  |  |  |  |  |  |
| oats                              | 163            | 23          |  |  |  |  |  |  |
| cotton                            | 244            | 35          |  |  |  |  |  |  |
| soybean                           | 335            | 48          |  |  |  |  |  |  |
| linseed (flax)                    | 359            | 51          |  |  |  |  |  |  |
| hazelnuts                         | 362            | 51          |  |  |  |  |  |  |
| pumpkin seed                      | 401            | 57          |  |  |  |  |  |  |
| safflower                         | 585            | 83          |  |  |  |  |  |  |
| sunflowers                        | 714            | 102         |  |  |  |  |  |  |
| peanuts                           | 795            | 113         |  |  |  |  |  |  |
| canola                            | 893            | 127         |  |  |  |  |  |  |
| olives                            | 910            | 129         |  |  |  |  |  |  |
| jojoba                            | 1,365          | 194         |  |  |  |  |  |  |
| coconut                           | 2,018          | 287         |  |  |  |  |  |  |
| oil palm                          | 4,465          | 635         |  |  |  |  |  |  |
| † Extracted from a table          | e published by | Azure       |  |  |  |  |  |  |
| Biodiesel Co., Sully, Iowa 50251. |                |             |  |  |  |  |  |  |

in fiber to make good swine feed. But soybean and cottonseed oils make biodiesels with high gel points. Gel point is the temperature fuel stops behaving as a liquid and turns into a gel in your tank.

Odden's approach values a crop's oil and its meal at Chicago Board of Trade prices (Table 2). He includes the market price of the oil as an opportunity cost in the budget for on-farm oil production (Table 3). This is a conservative approach; a farmer might prefer to substitute his/her own cost of production, but some value should be placed on oilseeds that instead of being sold are pressed on the farm. Odden's approach does put all crops on a standard basis. The other assumption Odden's calculations make is that a farmer pressing oilseeds will find a buyer or an on-farm use for the meal at market rates.



Gary Laydon watches as Kim Odden feeds the dualexpeller press, capable of 50 gallons in 24 hours.

Table 2. Aug. '08 market prices and yields of crops and their oil and meal components.

| Crop      |                    | Meal                |       | Oil                |       |
|-----------|--------------------|---------------------|-------|--------------------|-------|
| Sunflower | \$.26/lb, \$520/T  | 1,280 lb @ \$.15/lb | \$192 | 720 lb @ \$.455/lb | \$328 |
| Soybean   | \$.215/lb, \$430/T | 1,740 lb @ \$.18/lb | \$313 | 260 lb @ \$.45/lb  | \$117 |

When producing biodiesel from the extracted seed oil, methanol and lye (sodium hydroxide) or potassium hydroxide is added to separate the fuel from the glycerin. The biodiesel is sometimes "washed" to clean out first the methanol, and then the remaining water. Table 4 is Kim Odden's budget for fuel production.

The tables show a difference between the economics for canola oil and that for soybean and sunflower. When the workshop took place, canola oil was trading at a much lower price than the other two oils. In 2008, the corn ethanol market pushed up prices for corn and soybean oils, but canola was less affected. By December 2008, the overall economy had softened corn and soy prices, reversing the relative advantage of canola as a biodiesel feedstock (Table

Table 3. Aug. '08 cost per lb and gallon of oil extraction from seed. Oil @ Table 2 price/lb, e.g., soybean @ \$.45 \$.45 Extraction Labor/lb oil \$.02 Electricity/lb oil \$.01 Depreciation/lb oil \$.02 Repairs/lb oil \$.02 Total Cost, soybean \$.52/lb, \$4.06/gal Total Cost, canola \$.39/lb, \$3.04/gal Total Cost, sunflower \$.525/lb, \$4.10/gal

Table 4. Cost per gallon of biodiesel fuel production fromextracted oil, August and December 2008.

|                         | August '08 | December '08 |
|-------------------------|------------|--------------|
| Oil, e.g., soybean      | \$4.06     | \$3.12       |
| Labor                   | \$.10      | \$.10        |
| Electricity             | \$.05      | \$.05        |
| Lye †                   | \$.02      | \$.02        |
| Methanol †              | \$.56      | \$.56        |
| Total Cost, soybean     | \$4.79     | \$3.85       |
| Total Cost, canola      | \$3.77     | \$4.75       |
| Total Cost, sunflower   | \$4.83     | \$3.89       |
| Farm-delivered Diesel   | \$4.10     | \$1.80       |
| † Northeast Iowa prices |            |              |

4). Petroleum prices plunged as well, temporarily erasing any cost advantage of biodiesel derived from oilseeds.

In 2008, first market effects of corn ethanol and then the overall economy made biodiesel less advantageous. However, Kim Odden notes that in 2007 the Red River Valley of Minnesota was without diesel fuel for five days during harvest season. If you are concerned about buffering your farm from supply shocks and price spikes, biodiesel may be something to move on now rather than later.

Kim Odden is happy to respond to questions about biodiesel. He can be reached at (715) 764-5557, kodden@chibardun.net.

## **Supplemental Information**

| Table 5. Typical setup costs to pressoil and produce biodiesel fuel. |               |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
| 2-screw press                                                        | \$16,500      |  |  |  |  |  |  |  |
| 3-phase converter                                                    | \$1,200       |  |  |  |  |  |  |  |
| electrical work                                                      | \$500         |  |  |  |  |  |  |  |
| 2 augers                                                             | \$1,000       |  |  |  |  |  |  |  |
| press stand                                                          | \$300         |  |  |  |  |  |  |  |
| overhead bin                                                         | \$25          |  |  |  |  |  |  |  |
| 3 settling tanks                                                     | \$500         |  |  |  |  |  |  |  |
| fittings, tubes                                                      | \$25          |  |  |  |  |  |  |  |
| Extraction Total                                                     | \$20,050      |  |  |  |  |  |  |  |
| Fuel-making equipment                                                |               |  |  |  |  |  |  |  |
| Fuelmeister <sup>™</sup> processor                                   | \$3,000       |  |  |  |  |  |  |  |
| This configuration could p                                           | ress and      |  |  |  |  |  |  |  |
| process 10,000 to 30,000 g                                           | gallons/year. |  |  |  |  |  |  |  |

Tables 6-8 (on following pages). Feed Analysis of Canola, Soybean, and Sunflower Meal.

#### **UW Soil & Forage Analysis Laboratory** 8396 Yellowstone Drive Marshfield, WI 54449 Phone 715-387-2523 Fax 715-387-1723

Kim Odden P.O. Box 232

Cameron, WI 54822

#### Account: 557634 Date received: 3/10/2006 Date processed: 3/16/2006

Client: Kim Odden

COOPERATIVE EXTENSION

University of Wisconsin-Extension University of Wisconsin-Madison

Soils Department, Madison, WI

Results also available on-line at http://uwlab.soils.wisc.edu/reports lab number: 5636 access code: trd8

#### Grain/Commodity Report

Report Number: 5636 Lab Number: 1354 Sample Description: Pellets Material: Other Forage

| ltem                                                   | Abbre                               | bbreviation Unit |                | Resul             | t Metho | Method  |    |
|--------------------------------------------------------|-------------------------------------|------------------|----------------|-------------------|---------|---------|----|
| Dry Matter                                             |                                     |                  |                | % as fed          | 92.60   |         | wc |
| Moisture                                               |                                     |                  |                | % as fed          | 7.40    |         | С  |
| Protein Fractions                                      |                                     |                  |                |                   |         |         |    |
| Crude Protein                                          |                                     | СР               |                | % of DM           | 36.90   |         | wc |
| Fiber Fractions                                        |                                     |                  |                |                   |         |         |    |
| Acid Detergent Fiber                                   |                                     | ADF              |                | % of DM           |         |         | NA |
| Neutral Detergent Fiber                                |                                     | aNDF             |                | % of DM           | 16.49   |         | WC |
| Lignin (Acid Detergent)                                |                                     | ADL              |                | % of DM           |         |         | NA |
| Carbohydrates and Fats                                 |                                     |                  |                |                   |         |         |    |
| Non Fiber Carbohydrate                                 |                                     | NFC              |                | % of DM           | 23.92   |         | С  |
| Fat                                                    |                                     |                  |                | % of DM           | 14.09   |         | wc |
| Energy Calculations: 2001 NRC                          |                                     |                  |                |                   |         |         |    |
| Total Digestible Nutrients, 1X                         |                                     | TDN              |                | % of DM           | 87.98   |         | С  |
| Net Energy, Lactation, 3X                              |                                     | Nel              |                | Mcals/lb          | 0.92    |         | С  |
| Net Energy, Maintenance                                |                                     | NEm              |                | Mcals/lb          | 1.09    |         | С  |
| Net Energy, Gain                                       |                                     | NEg              |                | Mcals/lb          | 0.77    |         | С  |
| Metabolizable Energy                                   |                                     | ME               |                | Mcals/Ib          | 1.57    |         | С  |
| Macro Minerals                                         |                                     |                  | Micro Minerals |                   |         |         |    |
| Phosphorus P 1.02                                      | % of DM                             | wc               | Iron           | Fe                |         | ppm     | NR |
| Calcium Ca 0.60                                        | % of DM                             |                  | Manganese      |                   |         | ppm     | NB |
| Potassium K 1.37                                       | % of DM                             |                  | Zinc           | Zn                |         | ppm     | NR |
| Magnesium Mg 0.24                                      | % of DM                             |                  | Copper         | Cu                |         | ppm     | NR |
| Sodium Na                                              | % of DM                             | NB               | coppe.         |                   |         | F P     |    |
| Chloride Cl                                            | % of DM                             | NB               | Ash            |                   | 8.60    | % of DM | wc |
| Sulfur S                                               | % of DM                             | NR               |                |                   |         |         |    |
| WC = wet chemistry<br>NIR = near infrared spectroscopy | NR = not reques<br>NA = not availab |                  | C = calcu      | lated<br>ar value |         |         |    |

UW Soil & Forage Analysis Laboratory 8396 Yellowstone Drive

Marshfield, WI 54449 Phone 715-387-2523 Fax 715-387-1723

Kim Odden PO Box 232 Cameron, WI 54822

Account: 557634 Date received: 2/27/2007 Date processed: 3/9/2007

Results also available on-line at http://uwlab.soils.wisc.edu/reports lab number: 403 access code: ccgr

#### Grain/Commodity Report

Report Number: 403 Lab Number: 1296 Material: Other Feed duo

Sample Description: Extruded Soybeans

| CLIENT COPY |  |  |  |  |  |  |
|-------------|--|--|--|--|--|--|
|             |  |  |  |  |  |  |
|             |  |  |  |  |  |  |
|             |  |  |  |  |  |  |
|             |  |  |  |  |  |  |
|             |  |  |  |  |  |  |

Soybean Meal Feed Analysis

| ltem                   |            |         |                 | Abbre | viation                  | Unit                 | Result        | t       | Metho |
|------------------------|------------|---------|-----------------|-------|--------------------------|----------------------|---------------|---------|-------|
| Dry Matter<br>Moisture |            |         |                 | DM    |                          | % as fed<br>% as fed | 93.90<br>6.10 |         | wo    |
| Protein Fractions      |            |         |                 |       |                          |                      |               |         |       |
| Crude Proteir          | ı          |         |                 | СР    |                          | % of DM              | 39.08         |         | wo    |
| Fiber Fractions        |            |         |                 |       |                          |                      |               |         |       |
| Acid Deterger          | nt Fiber   |         |                 | ADF   |                          | % of DM              |               |         | NA    |
| Neutral Deter          |            | r       |                 | aNDF  |                          | % of DM              | 8.60          |         | wo    |
| Lignin (Acid I         |            |         |                 | ADL   |                          | % of DM              |               |         | N/    |
| Carbohydrates and      | Fats       |         |                 |       |                          |                      |               |         |       |
| Non Fiber Ca           | rbohydrai  | te      |                 | NFC   |                          | % of DM              | 31.20         |         | C     |
| Fat                    | -          |         |                 |       |                          | % of DM              | 14.84         |         | wo    |
| Energy Calculation     | ns: 2001 I | NRC     |                 | _     |                          |                      |               |         |       |
| Total Digestik         | le Nutrie  | nts, 1X |                 | TDN   |                          | % of DM              | 94.64         |         | C     |
| Net Energy, L          | actation,  | 3X      |                 | Nel   |                          | Mcals/lb             | 1.00          |         | C     |
| Net Energy, N          | laintenan  | ice     |                 | NEm   |                          | Mcals/lb             | 1.20          |         | c     |
| Net Energy, C          |            |         |                 | NEg   |                          | Mcals/lb             | 0.85          |         | c     |
| Metabolizable          | Energy     |         |                 | ME    |                          | Mcals/Ib             | 1.71          |         |       |
| Macro Minerals         |            |         |                 |       | Micro Minerals           |                      |               |         |       |
| Phosphorus             | Р          | 0.61    | % of DM         | wc    | Iron                     | Fe                   |               | ppm     | NR    |
| Calcium                | Ca         | 0.21    | % of DM         | WC    | Manganese                | Mn                   |               | ppm     | NR    |
| Potassium              | к          | 1.47    | % of DM         | WC    | Zinc                     | Zn                   |               | ppm     | NR    |
| Magnesium              | Mg         | 0.20    | % of DM         |       | Copper                   | Cu                   |               | ppm     | NR    |
| Sodium                 | Na         |         | % of DM         | NR    |                          |                      |               |         |       |
| Chloride               | CI         |         | % of DM         | NR    | Ash                      |                      | 6.28          | % of DM | WC    |
| Sulfur                 | S          |         | % of DM         | NR    |                          |                      |               |         |       |
| WC = wet chemistry     |            |         | NR = not reques | ted   | C = calcul<br>T = tabula | ated                 |               |         |       |

CLIENT COPY

Canola Meal Feed Analysis

COOPERATIVE EXTENSION University of Wisconsin-Extension University of Wisconsin-Madison Soils Department, Madison, WI

### Account: 555901 Date received: 9/1/2006 Date processed: 9/8/2006

### Results also available on-line at http://uwlab.soils.wisc.edu/reports lab number: 8446 access code: 943f

# Grain/Commodity Report

Report Number: 8446 Lab Number: 7346 Material: Other Feed/Byproduct Sample Description: Sunflower Meal

| tem                            | Abbreviation | Unit     | Result | Method <sup>1</sup> |  |
|--------------------------------|--------------|----------|--------|---------------------|--|
| Dry Matter                     | DM           | % as fed | 93.07  | wc                  |  |
| Moisture                       |              | % as fed | 6.93   | C                   |  |
| Protein Fractions              |              |          |        |                     |  |
| Crude Protein                  | СР           | % of DM  | 23.64  | WC                  |  |
| Fiber Fractions                |              |          |        |                     |  |
| Acid Detergent Fiber           | ADF          | % of DM  |        | NA                  |  |
| Neutral Detergent Fiber        | aNDF         | % of DM  | 30.57  | WC                  |  |
| Lignin (Acid Detergent)        | ADL          | % of DM  |        | NA                  |  |
| Carbohydrates and Fats         |              |          |        |                     |  |
| Non Fiber Carbohydrate         | NFC          | % of DM  | 20.51  | С                   |  |
| Fat                            |              | % of DM  | 19.04  | WC                  |  |
| Energy Calculations: 2001 NRC  |              |          |        |                     |  |
| Total Digestible Nutrients, 1X | TDN          | % of DM  | 90.51  | С                   |  |
| Net Energy, Lactation, 3X      | Nel          | Mcals/lb | 0.95   | С                   |  |
| Net Energy, Maintenance        | NEm          | Mcals/lb | 1.13   | C<br>C              |  |
| Net Energy, Gain               | NEg          | Mcals/lb | 0.80   | С                   |  |
| Metabolizable Energy           | ME           | Mcals/lb | 1.62   | С                   |  |

| Macro Minerals |    |      |         |    | Micro Minerals |    |      |         |    |
|----------------|----|------|---------|----|----------------|----|------|---------|----|
| Phosphorus     | Ρ  | 0.79 | % of DM | WC | Iron           | Fe |      | ppm     | NR |
| Calcium        | Ca | 0.43 | % of DM | WC | Manganese      | Mn |      | ppm     | NR |
| Potassium      | κ  | 1.59 | % of DM | WC | Zinc           | Zn |      | ppm     | NR |
| Magnesium      | Mg | 0.52 | % of DM | WC | Copper         | Cu |      | ppm     | NR |
| Sodium         | Na |      | % of DM | NR |                |    |      |         |    |
| Chloride       | CI |      | % of DM | NR | Ash            |    | 6.24 | % of DM | WC |
| Sulfur         | S  |      | % of DM | NR |                |    |      |         |    |

<sup>1</sup> WC = wet chemistry NIR = near infrared spectroscopy NR = not requested NA = not available C = calculated T = tabular value Sunflower Meal Feed Analysis