What have we learned over 30 years at the Wisconsin Integrated Cropping Systems Trial?

Randy Jackson, Professor of Grassland Ecology Department of Agronomy, University of Wisconsin-Madison

Josh Posner

Janet Hedtcke

Gregg Sanford

MICHAEL FIELDS AGRICULTURAL INSTITUTE

WICST

Established in 1990

Two locations

- (ARL) Arlington, WI 1990 to present
- (LAC) Elkhorn, WI 1990 to 2002

Large plots

- Plot size = 0.7 ac
- Field-scale equipment

Performance metrics:

- Productivity
- Profitability
- Environment

Core data sets

Management

- agronomic calendars
- field notes/observation
- weather

Productivity

- yields: grain, forage, pasture
- average daily gain (cattle)
- weed biomass (mid-season)

Profitability

- input prices
- elevator prices
- hay auction prices

Environment

- spring & fall nitrates
- fall soil fertility
- soil organic carbon (SOC)
- soil archive

Mark Walsh

Jimmy Sustachek

Outline

1. <u>Productivity</u>

- a. Yields (Posner et al. 2008)
- b. Profitability (Chavas et al. 2009)
- c. Yield stability & resilience (Sanford et al., in prep)

2. <u>Environment</u>

- a. Soil loss (Hedtcke, unpublished)
- b. Soil quality index (Jokela et al. 2011)
- c. SOC change (Sanford et al. 2012)
- d. SOC mechanisms (Rui et al., in prep)
- 3. <u>Future</u>: Intenisfy, extensify, and relate
 - a. Sustainable intensification to build SOC (Sanford & Jackson, USDA)
 - b. Expand inference space (Jackson et al., US DFRC)
 - c. Feeding models & decision support tools (Kuckarik, Gratton, et al., UW2020)

Productivity

Posner JL, Baldock JO, Hedtcke JL (2008) Organic and conventional production systems in the Wisconsin Integrated Cropping Systems Trials: I. Productivity 1990-2002. *Agronomy Journal* 100: 253-260

Hedtcke JL (2012) Pastured heifers grow well and have productive first lactations. *CIAS Research Brief #89*

Chavas J-PP, Posner JL, Hedtcke JL (2009) Organic and Conventional Production Systems in the Wisconsin Integrated Cropping Systems Trial: II. Economic and Risk Analysis 1993–2006. *Agronomy Journal* 101: 288-295

Corn yields (1990-2002)

	Normal spring (May + June ~9" ppt)		
	ARL	LAC	
Cropping system	bushel/acre		
CS2: Conventional corn-soybean	173	132	1112 7 1
CS3: Organic corn-soybean-wheat	167	124	
Organic : conventional	96%	94%	

Posner et al. 2008

Soybean yields (1990-2002)

	Normal spring (May + June ~9" ppt)		
	ARL	LAC	
Cropping system	bushel/acre		
CS2: Conventional corn-soybean	57	53	
CS3: Organic corn-soybean-wheat	54	49	
Organic : conventional	95%	92%	

Posner et al. 2008

Grazed heifers performed as well as confined animals

Haley MeLampy

0360

Grazed heifers performed as well as confined animals

Grazing most profitable WICST system

Table 3. Economic mean returns under alternative scenarios in the Year 2000.

	Arlington			Elkhorn		
System	No government payment or organic premium (Scenario I)	Government payment only (Scenario 2)	Government payment + organic premium (Scenario 3)	No government payment or organic premium (Scenario I)	Government payment only (Scenario 2)	Government payment + organic premium (Scenario 3)
			\$I	a ⁻¹		
SI Continuous corn	365d†	540c	540b	69d	199d	199c
S2 No-till corn-soybean	465c	574b	574b	361b	416b	416b
S3 Organic grain corn-soybean-wheat	335d	423d	784a	212c	275d	581a
S4 Intensive alfalfa	535b	535c	535b	212c	212d	212c
S5 Organic forage	528bc	528c	717a	376Ь	376c	528a
S6 Rotational grazing	735a	735a	735a	592a	592a	592a

† Within a scenario (column), numbers followed by a different letter are significantly different at the 0.05 level.

Energy yields over 26 years

Yield resistance (observed/predicted)

-2sd palmer Z index (drought) year: 2012 						
System p<0.0001 Organic & Pasture						Corn
System	СоАА	CSW	PAST	CS	CAAA	CC
Estimate	1.0231	1.0127	0.9946	0.9787	0.9376	0.7905
Group	A	А	А	AB	В	C
+2sd palmer Z index (excess) year: 2018 System p<0.0001 Corn-Soybean Perennials						
System	CS	CSW	CC	CAAA	PAST	СоАА
Estimate	1.0395	1.0057	0.9621	0.9551	0.9282	0.7756
Group	A	AB	BC*	C*	C*	D*

Environment

Cates AM, Ruark MD, Hedtcke JL, Posner JL (2016) Long-term tillage, rotation and perennialziation effects on particulate and aggregate soil organic matter. *Soil and Tillage Research*, 155: 371-380

Vereecke L, Silva E (201x) Soil microbial metagenomics in the Wisconsin Integrated Cropping Systems Trial. *In prep*

Jokela W, Posner J, Hedtcke J, Balser T, Read H (2011) Midwest cropping system effects on soil properties and on a soil quality index *Agronomy Journal* 103: 1552-1562

Soil loss (RUSLE2)

Soil quality index (SQI)

Jokela et al. 2011

Most systems losing soil organic carbon

Sanford et al. 2012

C accumulating in surface POM...

...and microbial biomass...whose composition differs by cropping system

Higher oxidative enzyme activity in COA

Summary of past & current research

Productivity

- Organic ~ Conventional when weeds controlled 1.
- Perennials more reliable in drought, annuals in excess 2.
- Grassland. Organic and pasture yields have room for improv 3.

Profitability

- Organic > Conventional w/ n 1.
- Managed grazing mos 2.

Environment

1. \//

ment in organic systems resulting in higher soil losses al systems losing soil C, perennials holding on

Intensify

Relate

...care for people cannot be separated from care for the land

"Despite its profundity, 'The Land Ethic' remains principally a literary achievement; the philosophical aspiration at its core has not, as Leopold hoped, transformed society."

(Goldberg & Patz 2015 Lancet)

Problems

MINIONNA MUNICIPAL News Sports Opinion Obituaries Business Lifestyles Entertainment Buy & Sell

<u>ở</u>: 22

TOPICAL

Scott Walker says crisis team needed to help state's crippled dairy industry

ROB SCHULTZ rschultz@madison.com Jun 6, 2018

Consolidation

TOR

A REAL

Credit: Alisa Chang

Problems

Efficiency –> Imbalance –> Distribution

Distribution

Photo credit: National Weather Service.

Problems

Eutrophication

Photo: Emily Stanley

hoto: Katie Rice

Problems

Eutrophication

Problems

http://cbbel-in.com

and a state of the

Photo: Gary Sands

VILLAGE OF BLACK EARTH DANE COUNTY

Flooding

100

Problems

Photo: University of Wisconsin-Madison

Solutions

Yahara River watershed Corn & soybean cover

Cover	Acres	Percent of area	P Loading (lbs/yr)
Corn	1,464,328	23.5	1,160,062
Soybean	455,204	7.3	188,518
Total	1,919,532	30.8	1,348,580

& soybean

land

19

17

19

Acres

282,511

78,490

361,000

Cover

Corn -> Grass

Soybean -> Grass

Corn+Soybean -> Grass

P Loading

(lbs/yr)

9,440

2,270

11,710

Perennial grasslands should reduce P-loading

Corn & soybean cover 500 ft. from stream

Yahara River watershed

Buffer size	Total Area	Percent of Corn/Soy land	P loss from buffer	Total P	% decrease
0	0	0		1,500,583	
50	30,839.70	2%	7,239	1,368,770	-8.8
100	82,272.60	4%	9,658	1,183,730	-21.1
500	361,000.10	18.8%	11,710	496,111	-66.9
1000	696,844.30	36.3%	11,715	145,586	-90.3

Solutions

destabilizing climate change polluting lakes & streams reducing biodiversity stabilizing climate purifying water mitigating floods providing habitat

perennial

annual

Solutions

Grassland 2.0!