Interseeding covers Weed management in narrow- and wide- row corn

JOHN WALLACE EXTENSION WEED SPECIALIST

PennState College of Agricultural Sciences

Pennsylvania climate & agriculture

Agronomic fit for cover crop interseeding?

R. Myers (2018)

37%

Cover cropping in annual croplands

Soil conservation &

nutrient management

Interseeding

Crop diversity & soil health

Forage & livestock grazing

Developing BMPs (2010–2015)

1. Drill-interseeding in notill acres to improve establishment

Developing BMPs (2010-2015)

- 1. Drill-interseeding in no-till acres to improve establishment
- 2. Interseed shade tolerant cover crop species

annual ryegrass

red clover

Caswell et al. (2018)

Developing BMPs (2010-2015)

- 1. Drill-interseeding in no-till acres to improve establishment
- 2. Interseed shade tolerant cover crop species
- 3. Interseed in V4 –V6 growth stage window

Developing BMPs (2010-2015)

- Drill-interseeding in no-till acres to improve establishment
- 2. Interseed shade tolerant cover crop species
- 3. Interseed in V4 –V6 growth stage window
- 4. Use short-lived residual herbicides to setup POST

Wallace (2018) Farm Journal editorial

PA set-up programs

Verdict (Outlook + Sharpen) Outlook/BasisBlend (Matrix/Harmony)

On-Farm Trials (NRCS-CIG; 2013–2014)

Curran et al. 2018

Northern PA (Zone 5) Interseeded annual ryegrass

Central PA (Zone 6b) Interseeded annual ryegrass

Central PA (Zone 6b) Interseeded annual ryegrass in corn (left) vs. fallow (right)

Annual ryegrass, Lancaster Co., 2014 6 weeks after interseeding (R. Hoover) Annual ryegrass, Lancaster Co., 2014 14 weeks after interseeding (R. Hoover)

Improving persistence of interseeded covers?

- 1. Corn populations & hybrid selection
- 2. Earlier interseeding (V3 window)
- 3. Row spacing (30" vs. 60")

Management tactics: #1 Seed drop & flex ear hybrids

TAKE HOME: Reducing seed drop by 10% (~28K) did not reduce yield of flex-ear hybrids & produceda measurable increase in light transmission in corn canopy.

Management tactics: #1 Seed drop & flex ear hybrids

Summarized from Youngerman et al. (2018)

Management tactics: #2 Earlier interseeding

TAKE HOME: Interseeding earlier (V3-V4) increased biomass **production & persistence** in high yielding production regions in southeastern PA.

	Lancaster Co.				York Co.		
Data	ctl	V4	V6	ctl	V3-V4	V6-V7	
Corn yield (bu/ac)	155	156	162	253	247	249	
Cover crop establishment (%) ¹	-	68	48	-	83	20	
Cover crop biomass (lb/ac) ²	-	1246	969	-	327	0	

¹Establishment: whole plot visual evaluation of density and vigor at harvest ²Dry matter biomass evaluated in areas of cover crop establishment

R. Hoover (PSU; unpublished data)

2020 Field Experiment

Improving production & persistence of interseeded cover crops?

- 1. Hybrids (flex ear vs. determinate)
- 2. IS timing (V₃ vs V6)
- 3. Row spacing (30" vs. 60")

Cornell University (M. Ryan, C. Pelzer)

Landisville, PA

Sustainable Agriculture Research & Education Sustainable Agriculture Research & Education

2020 Field Experiment: Row spacing x hybrid selection

Determinate ear (Local Seeds) 30" row spacing Seed drop: 32K/ac Burndown + POST glyphosate Nitrogen applied at planting

Semi-flex (Local Seeds) 30" row spacing Seed drop: 32K/ac Burndown + POST glyphosate Nitrogen applied at planting

Sustainable Agriculture

Research & Education

2020 Field Experiment: Row spacing x hybrid selection

Determinate ear (Local Seeds) 60" row spacing Seed drop: 32K/ac Burndown + POST glyphosate Nitrogen applied at planting

Semi-flex (Local Seeds) 60" row spacing Seed drop: 32K/ac Burndown + POST glyphosate Nitrogen applied at planting

Sustainable Agriculture

Research & Education

2020 Field Experiment: Interseeding timing x species

Annual ryegrass 25 lb/ac V3 vs. V6

Cereal rye 90 lb/ac V3 vs. V6

Medium red clover 15 lb/ac V3 vs. V6

Sustainable Agriculture Research & Education

Spacing x hybrid: CC response

TAKE HOME (CC biomass):

- North-south latitudinal gradient
- 2X increase in 60" row spacing
- Determinate > Flex in 30" rows (p < 0.01)

Corn Mar	nagement	Cover crop biomass (lb/ac) at corn harv					arvest
Spacing	Hybrid	Aurora NY		Rock Springs PA		Landisville PA	
30"	Flex ear	177	160/	94	110/	9	27
30"	Determinate	260	46%	105	1170	27	37
60"	Flex ear	255	000/	170	-9%	49	-9%
60"	Determinate	460	00%	155		45	

Photosynthetically active radiation (PAR)

Spacing x IS Timing: CC response

TAKE HOME: Interseeding early(V3) increased CC biomass production in narrow (30") and wide (60") rows

Managem	Cover crop biomass (lb/ac) at corn harvest						
Corn spacing	CC sow timing	Aurora NY		Rock Springs PA		Landisville PA	
30"	V3	275	TC00/	155	+3 EV	30	τĘΛ
30"	V6	163	+68%	44	±2.3X	6	TJA
60"	V3	490	10 2V	213	+86%	61	+2X
60"	V6	211	72.38	114		33	

Spacing x hybrid: corn yield

TAKE HOME: Consistent yield decline in 60" rows (16 to 45%)

Determinate > Flex in 30" row spacing Flex > Determinate in 60" row spacing

Corn Man	agement		С	orn yield (bu/ac)			
Spacing	Hybrid	Aurora NY		Rock Springs PA		Landisville PA	
30"	Determinate	157	150/	100	270/	196	200/
60"	Determinate	87	-45%	73	-21 70	136	-30 %
30"	Flex ear	158	250/	90	-16%	179	-22%
60"	Flex ear	103	-33%	75		140	

Spacing x hybrid: weed response

TAKE HOME: Use of 60" row spacing increased weed pressure 4X-14X compared to 30" rows (p < 0.001)

Corn Management Weed biom			ass (Ib/ac) at corn harvest				
Spacing	Hybrid	Aurora NY		Rock Springs PA		Landisville PA	
30"	Determinate	274	+4X	17	+14X	100	+12X
60"	Determinate	1090		245		1250	
30"	Flex ear	222		21	+7X	187	+4X
60"	Flex ear	1050	T4X	150		730	

Weed management in wide row corn

- NOTE: If CC will be livestock feed, herbicide options are limited to glyphosate, with few exceptions
- Mixtures of warm season covers will be needed to suppress late emerging weeds (buckwheat, millets, cowpea)
- Some cool season covers may go to seed and become volunteer weed issue
- Problems weeds in 60" corn: Glyphosate-resistant spp., waterhemp, palmer, fall-grasses

Herbicide-resistance management

POST glyphosate program

Half-rate residuals + POST glyphosate

Full-rate setup program + POST glyphosate

Full-rate setup program + multiple MOA POST program

Overlapping residual programs (PRE fb tolerant CCs fb post-residual)

late-emerging, multiple-resistant, pigweed *spp*

2020 Field Experiment

Testing conceptual approaches for: 1. Early interseeding (V₃; ~ 28 DAP) 2. Species tolerance (setup vs. Cadillac) 3. Overlapping residuals

PRE	POST fb Interseed	Interseed fb Residual
None	Glyphosate	None
Set-up (Verdict)	Glyphosate	None
Set-up (Verdict)	None	Warrant (acetochlor; 15)
Zidua/Callisto/ATZ	None	None
Zidua/Callisto/ATZ	None	Warrant (acetochlor; 15)

2020 Field Experiment

TAKE HOME:

- Set-up programs injures ryegrass at V3 timing
- Cereal rye comes through "Cadillacs"
- Post-interseeding Group 15 residual may improve weed control w/ minimal impact to established cover crops?

		Relative to 1-pass glyphosate				
PRE program at planting	POST program days after interseeding	Weed Control	Ryegrass density	Cereal rye density		
Verdict	Glyphosate 0 DAI	+ 50%	- 70%	+ 100%		
Verdict	Warrant 10 DAI	+ 75%	- 66%	+ 33%		
Zidua/Callisto/ATZ		+ 66%	- 98%	+ 66%		
Zidua/Callisto/ATZ	Warrant 10 DAI	+ 90%	- 99%	+ 45%		

Persistence in soil

Atrazine

Interseed grass/broadleaves safely at 0.5 – 1 lb ai/ac

Low

CC

High

HPPDs (Group 27s)

Callisto & Balance will result in significant injury to small seeded broadleafs

Wallace et al. (2017)

Cover crop sensitivity: Exploiting CC tolerances?

At a given herbicide dose in soil, or # of half-lives, cover crop species should differ in sensitivity.

EX: Mesotrione (Callisto): Crimson clover

Application Rate

Cover crop sensitivity: Exploiting CC tolerances?

Sources of variation:

- 1. Grass, legume, brassicas
- 2. Seed size

SEED SIZE

Triticale Cereal rye Sudangrass Annual ryegrass

Austrian winter pea Sunn hemp Hairy vetch Buckwheat Daikon radish Forage radish Tillage radish Crimson clover Rumba mustard White mustard Berseem clover Dwarf essex rape Winter canola Med red clover

100 50

PennState College of Agricultural Sciences

Seed Mass (mg/seed)

Cover crop sensitivity: Exploiting CC tolerances?

Wallace and Maloney (in prep)

Relative sensitivity table: forthcoming soon!

	Zidua	Dual	Outlook	Harness	Prowl
Annual ryegrass	5	5	5	5	4
Sorghum sudan	3	3	3	3	3
Cereal rye	т	2	2	3	т
Triticale	т	2	2	4	т
Medium red clover	3	2	5	5	2
Crimson clover	3	4	4	5	2
Hairy vetch	2	3	3	5	2
Austrian winter pea	1	3	2	4	2
Winter canola	5	т	т	3	т
Forage rape	5	т	т	1	т
Daikon radish	4	т	Т	2	т
Buckwheat	5	3	5	5	1

SCALE: Estimated ED_{50s} using nearest half-life value; T = tolerant (ED_{50s} > 1X rate).

Interseeding & Weed Control Tactics

- Crop diversity & weed seedbanks
 - crop diversity \rightarrow low weed seedbanks (OR)
 - Iow weed seedbanks → crop diversity
- NOTE: Integrated livestock systems
 - Necessarily a low herbicide input system

- Proactive herbicide resistance management?
 - Reduce seed rain in the corn phase (waterhemp management)
 - Avoid single MOAs and half-rate herbicide programs
- Making the most of CC mixtures
 - Mixtures limit herbicide options; but we may be able to find CC mixtures that are tolerant to certain programs

Acknowledgments

Past Work

- Research team: Bill Curran (Professor emeritus, PSU), Greg Roth (Professor emeritus, PSU), Corey Dillon (Agronomy Farm Manager, PSU), Ron Hoover (On-farm research coordinator, PSU), Chris Houser (PSU), Matt Ryan (Cornell University), Steven Mirsky (USDA Beltsville)
- Funding sources: NRCS-CIG, OREI
- Current Work (2020 2023)
- Research & extension team: Tosh Mazzone (Research technologist, PSU), Matt Ryan (Cornell University), Chris Pelzer (Cornell University), Bryan Brown & Jaime Cummings (NY-IPM), Zach Larson, Heidi Reed & Ron Hoover (PSU Extension Agronomy), Jonathan Martin (Finger Lakes Agronomics), Genesee River Watershed Coalition of Conservation Districts, Soil Water Conservation Districts (Niagra Co, NY; Clinton Co, PA)
 Funding sources: NESARE

CIG

Conservation Innovation Grants

Spacing x CC species: CC response

TAKE HOME: Effect of row spacing on biomass of CC species differed by location.

Management tactics Cover crop biomass (lb/ac) a			lb/ac) a	t corn h	arvest		
Corn spacing	CC species	Aurora NY		Rock Springs PA		Landisville PA	
30"	ryegrass	274	73%	123	+47%	14	+50%
60"	ryegrass	476		182		21	
30"	cereal rye	213	760/	119	+85%	7	+3X
60"	cereal rye	377	16%	221		22	
30"	red clover	169	470/	56	+50%	33	+3X
60"	red clover	199	1/70	84		97	

The Promise and Potential of Interseeding

Cover cropping in grain crop systems

SPECIES SELECTION

Shade tolerant species

annual ryegrass

Medium red clover

Daikon radish

Caswell et al. (2018)

SOIL CONSERVATION on erosion prone lands

INTERSEEDING BMPs for no-till corn production

Wallace (2018) Farm Journal editorial

INTERSEEDING TIMING

Minimize potential for corn yield drag while maximizing cover crop growing season window

Curran et al. (2018)

2020 Field Experiment

2020 Field Experiment

Drill-interseeding marginally improved cover crop establishment compared to broadcast interseeding in organic grain corn (Wallace et al. 2019)

sol

Nitrogen retention services provided by plant-microbial linkages in organic interseeded cover cropping systems

Sarah Isbell and Jason Kaye, PSU

Interseeding Nitrogen retention on organic grain farms

Pennsylvania climate & agriculture

Cover cropping in grain crop systems

R. Myers (2018)

Northeast producer survey (2020)

What factors drive interest in CC interseeding?

