

Alternative Cropping System in the Midwest: A Study Case using Dry Edible Beans

Jean Bertrand Contina¹, Ph.D. and Reza Keshavarz Afshar², Ph.D.

¹RI-MOC Research Director; ²Rodale Institute Chief Scientist jean.contina@rodaleinstitute.org; reza.afshar@rodaleinstitute.org

RODALE MIDWEST ORGANIC CENTER

AT ETZEL SUGAR GROVE FARM

Our story:

- Founded in 1947 by Jerome I. Rodale in Kutztown, PA.
- Formerly known as the "Soil & Health Foundation".
- Inspired by Sir Albert Howard (early founders of organic movement).
- Created the 'Organic Gardening and Farming' magazine
- Popularized the term "organic" in the U.S.
- Regional Resource Centers:
 - California, Iowa, Georgia, Oregon, Pennsylvania, and Italy
- Research
- Organic Consulting
- Education

Healthy Soil = Healthy Food = Healthy People

Main campus: Kutztown, PA

Farming Systems Trial

Conventional Synthetic

This system represents a typical U.S. grain farm. It relies on synthetic nitrogen for fertility, and weeds are controlled by synthetic herbicides selected and applied at rates recommended by Penn State University Cooperative Extension.

Organic Legume

This system represents an organic cash grain system. It features a mid-length rotation consisting of annual grain crops and cover crops. The system's sole source of fertility is leguminous cover crops, and crop rotation provides the primary line of defense against pests.

Organic Manure

This system represents a diversified organic dairy or beef operation that includes a long rotation of annual feed grain crops and perennial forage crops. Fertility is provided by leguminous cover crops and periodic applications of composted manure from livestock. A diverse crop rotation is the primary line of defense against pests.

Farming Systems Trial: Results and Conclusions

ORGANIC PRACTICES INCREASE SOIL ORI MATTER MICROBIAL BIOMASS, DIVERSITY, A WHILE REDUCING SOIL COMPACTION	GANIC IND ACTIVITY DN.	30% HIGHER YIELDS DURING TIMES OF EXTREME WEATHER.	ORGANIC YIELDS MATCH CONVENTIONAL YIELDS FOR CASH CROPS, SUCH AS CORN AND SOYBEAN.
ORGANIC MANAGEMENT INCREASES WATER INFILTRATION AND DOES NOT CONTRIBUTE TO THE ACCUMULATION OF TOXINS IN WATERWAYS.	EVEN WITHOU ORGANIC CRO THE ORG SYSTEM PROFITA	T THE PREMIUMS PAID FOR PS, ANIC MANURE IS THE MOST BLE SYSTEM	ORGANIC SYSTEM OPERATION COST IS SIGNIFICANTLY LOWER THAN CONVENTIONAL MANAGEMENT.

Farming Systems Trial: Results and Conclusions

Benefits of healthy soil

- Increase soil organic matter
- Increase soil organic carbon
- Increase microbial population
 - N-fixing bacteria
 - Biocontrol microbes
- Increase the availability of soil nutrients
- Improve soil physical properties
 - Water content
 - Aggregate stability
 - Erosion prevention

Sylvia et al. 2005. Principles & Applications of Soil Microbiology

Soil aggregates

- Mineral soil particles
- Organic matter
- Water
- Plant root
- Soil organisms
 - Fungi
 - Bacteria
 - Nematodes

Midwest Organic Center (MOC):

- Rodale Institute's pioneer Regional Resource Center.
- Long-term agronomic research & education hub to help farmers.

MOC's priorities for the Midwest:

- Help organic and transitioning farmers be successful.
- Improve soil health and ecosystem productivity.
- Improve water quality within local and regional watersheds.
- Restore rural communities by supporting local farmers and local foodsheds.
- Increase biodiversity.
- Mitigate and adapt to climate change by sequestering carbon and modeling diversified, resilient farming practices.

Plant hardiness zone

120B: Tama silty clay loam, 2 to 5 percent slopes (408535)

Muscatine (5%) Wet Loess Upland Flat Prairie Aquic Hapludolls Somewhat poorly drained Hydric: No Ap A1 A2 AB Btq1 Btg2 -81 Btg3 -107BCa1 -122 BCq2 163 interfluves / Shoulder

interfluves / Summit

Soil series

Hydric: No

Ap

A2

Bw1

Bw2

175C: Dickinson fine sandy loam, 5 to 9 percent slopes (408569) Dickinson (90%) Sparta (5%)

Sandy Upland Prairie Sandy Upland Prairie Typic Hapludolls Entic Hapludolls Well drained Excessively drained Hydric: No Ap AB Bw1 -91 Bw2 -152 dunes / Summit dunes / Shoulder dunes / Backslope 183 Bt 203

Dickinson (5%) Sandy Upland Prairie Typic Dystrudepts Well drained Hydric: No Ap -23 A1 A2 Bw1 -61 Bw2 -76 -91

-152 dunes / Summit dunes / Shoulder

dunes / Backslope

<u>Staff</u>

Jean Bertrand Contina Research Director

Linda Sturm-Flores Research Technician

Drew Erickson Farm Manager

Brooke Roberts Research Intern

Organic Consultants

•

Léa Vereecke Midwest Regional Manager

Nicholas Podoll Great Plains Regional Manager

Expertise:

- Cover cropping
- Reduced tillage systems
- Organic row crops
- Small grains
- Industrial hemp

Expertise:

- Organic farmer
- Vegetable production
- Organic row crops
- Small grains
- Rangeland

Certified organic farms: Top 10 states (USDA-NASS 2019 survey)

State	Land (acres)	Operations (number)	Total sales (million USD)	Average sales/farm (thousand USD)
California	965,257	3,012	3,596.90	1,198
Wisconsin	250,940	1,364	268.90	198
New York	323,081	1,321	298.40	227
Pennsylvania	107,550	1,048	741.80	714
Ohio	111,920	785	117.00	150
lowa	133,691	779	144.60	186
Washington	111,930	745	886.00	1,192
Vermont	203,002	655	159.70	245
Minnesota	172,968	635	113.60	179
Indiana	-	595	181.0	305
United States	5,495,274	16,585	9,925.90	601

Research priorities

Organic dry bean production	 Optimizing the benefits of cover crops and no-till system. 					
Organic vegetable production	 Improving soil health using no-till practices. 					
Alternative cropping systems	 Diversifying corn-soybean rotation with livestock integration. 					
Organic corn production	 Optimizing animal manure application and soil fertility. 					
Agroforestry system	 Integrating trees, pasture, small grains, and livestock. 					

<text>

Objectives:

- Evaluate suitability and profitability of various small grains, pulse crops, and oilseeds as alternative crops for the Midwest.
- Determine agronomic, economic, and environmental benefits of diversified cropping systems with livestock integration.
- Disseminate project results to farmers throughout the Midwest region.
- Increase expansion of organic farming throughout the Midwest by providing technical support to the farmers.

The share of global harvested cropland area that goes to direct food

World Resources Institute, 2022

Source: USDA

			Field B - Crop Diversity Study - Fall 2022 Planting																						
				Blo	ck 1		В	lock 2	2											Blo	ock 3				
Canola	Wheat	Barley	Реа	Rye	Fallow (Sunflower, Soybean, Grain sorghum, cowpeas)		Fallow (Sunflower, Soybean, Grain sorghum, cowpeas)	Реа	Wheat	Rye	Canola	Barley		(Sun G	Fal Iflower rain s cow	low r, Soyb orghur peas)	ean, n,	Canola	Wheat	Реа	Rye	Barley	Fa (Sunflow Grain cov	allow ver, Soybean sorghum, wpeas)	,
			Nort	h																					

Yield assessment

Soil type	Сгор	System	Yield (lbs./acre)	Conventional yield (lbs./acre)	Standard deviation	Standard mean error
Fine sandy loam	Cowpea	No-till	411.01	900 — 1,350	207.86	84.86
Fine sandy loam	Grain Sorghum	Till	908.84	4,480 – 6,720	578.89	236.33
Fine sandy loam	Soybean	No-till	2,088.27	3,840 – 4,000	406.61	166.00
Fine sandy loam	Sunflower	Till	847.98	1,500 – 3,000	194.04	79.21
Silty clay loam	Cowpea	No-till	412.12	900 – 1,350	316.83	182.92
Silty clay loam	Grain Sorghum	Till	596.69	4,480 – 6,720	168.86	97.49
Silty clay loam	Soybean	No-till	1,700.17	3,840 – 4,000	932.36	538.30
Silty clay loam	Sunflower	Till	876.80	1,500 – 3,000	348.44	201.17

Objectives:

- Restore degraded land and protect against erosion.
- Diversify the monoculture-based cropping systems by integrating trees into annual crop and livestock agroecosystems.
- Diversify income sources for farmers and landowners to provide a safety net against market volatility and climate change.
- Mitigate climate change by increasing carbon sequestration potential in soil and above ground biomass.
- Increase knowledge and collaboration between agroecological research institutions.

(pawpaws, berries) grown between rows of trees.

Experimental design

Enhancing Agroecosystem Services through Agroforestry

Spatial analysis: Soil physical characteristics

RODALE

NIC CENTER

Dielectric permittivity

Temperature

Electrical conductivity

Objectives:

- Determine the biomass production of two varieties of rye planted at three different seeding rates.
- Determine dry bean yield when planted at three different seeding rates.
- Evaluate the efficacy of roller-crimped rye in controlling the prevalence of weeds in the field.
- Evaluate soil nutrients availability in till and no-till systems.

Cover crop benefits

- Increases soil organic matter
- Reduces soil erosion
- Controls weeds
- Reduces soil compaction
- Provides a nitrogen source
- Provides nitrogen scavenging
- Increases infiltration
- Increases cash crop yields

Jeff Moyer, CEO Rodale Institute.

Effect of agricultural disturbances on soil organic carbon

Four key soil health indicators show evidence of improvement with cover crop use over 3-5 years.

Wood, S.A., and M. Bowman 2021.

Aggregate Stability

Soil organic matter

Cover crop effect on soil

Soil physical factors: Cereal rye

Soil moisture

2,000,000

1,500,000

,000,000

500,000

0

Tillering (tillers/acre)

Dry Beans Production in Roller-crimped Rye

Cereal rye growth and development

Rye tillering count

Rye biomass

Rolling down cereal rye

Seeding rate (seed/acre)

Soil water content: Dry beans

Date

Soil temperature: Dry beans

Date

Electrical conductivity: Dry beans

Date

Soil analysis: Dry beans

Organic matter

Phosphorus

Total Nitrogen

Yield assessment: Dry beans

Dry beans yield

2023 Dry beans trials: Seeding densities in till & no-till lands

Cereal rye (ND Gardner) - January 6, 2023

Cereal rye (ND Gardner) - January 16, 2023

Education | Consulting | Outreach

2022 MOC Field Day

Education | Consulting | Outreach

Survey & questionnaire

Education | Consulting | Outreach

Conferences and farmer's field days

- 2022 in summary: 18 conferences | 7 webinars | 1 Field Day | 3 Newsletters | 3 News Media Interviews | > 15 field tours | and > 1,300 participants across the Midwest.
- As of November 7, 2022, 46 Midwest farmers have committed to transitioning a total of 10,542 acres of land to organic production with direct support from MOC consultants.

Conferences & Events for 2023

Event	Location	Role	Date
Rodale Institute - Research	Online	Presentation	January 18
Practical Farmers of Iowa	Ames, IA	Presentation & booth	January 19-21
Rodale Institute - Education	Online	Presentation	February 1
Marbleseed Conference	La Crosse, WI	Posters & booth	February 23-25
Iowa Specialty Producers	Ankeny, IA	Presentation	February 22-23
PFI Midwest Covers & Grains	Cedar Rapids, IA	Booth	March 1-2
Steering Committee Meeting	Online	Presentation	March
DSSAT Training Workshop	Griffin, GA	Training	May 15-20
APS North Central Division	-	Poster presentation	June
MOC Field Day	Marion, IA	Field Day	August 16
ASA, CSSA, SSSA Conference	St. Louis, MO	Poster presentation	Oct. 29-Nov. 1
Iowa Organic Conference	Iowa City, IA	Presentation & booth	November

Future directions

- Alternative cropping system
- No-till vegetable production
- Optimizing cover crop management
- Agroforestry project
- Small grain variety trials
- Expand education and outreach
- Expand research collaboration with universities and private institutes

MOC thanks its sponsors, supporters, and collaborators:

WALTON FAMILY FOUNDATION

STRANAHAN FOUNDATION

IOWA DEPARTMENT OF AGRICULTURE & LAND STEWARDSHIP

Indian Creek

COE COLLEGE.

NATURE CENTER

Rodale Institute Midwest Organic Center - Rodale Institute

Healthy Soil = Healthy Food = Healthy People

Thank you! Questions

