Seed Treatments

Agronomics and Environmental Impacts Matt O'Neal

Key studies on neonic seed treatments

- "What's on your seed?" 2022. Grint and Smith.
 - <u>https://ipcm.wisc.edu/wp-content/uploads/sites/54/2022/11/Whats_on_your_seed_web.pdf</u>
- "Probability of cost-effective management of soybean aphid in North America" 2009. Johnson et al.
 - https://doi.org/10.1603/029.102.0613
- "High-Input Management Systems Effect on Soybean Seed Yield, Yield Components, and Economic Break-Even Probabilities" 2016. Orlowski et al.
 - https://acsess.onlinelibrary.wiley.com/doi/full/10.2135/cropsci2015.10.0620
- "A Machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north-central US. 2021. Shah et al.
 - https://doi.org/10.1038/s41598-021-98230-2
- "Iowa State University Report of Insecticide" Hodgson et al. 2020.
 - https://store.extension.iastate.edu/product/16055
- "Beyond the Headlines: The influence of insurance pest management on an unseen silent entomological majority." 2020. Krupke and Tooker. <u>https://doi.org/10.3389/fsufs.2020.595855</u>
- "Quantifying neonicotinoid insecticide residues in milkweed and other forbs sampled from prairie strips established in maize and soybean fields. 2022. Hall et al.
 - https://doi.org/10.1016/j.agee.2021.107723

"What's on your seed?"

https://ipcm.wisc.edu/wpcontent/uploads/sites/54/2022/11/Whats on your seed_web.pdf

• 133 product trade names across 4 treatment types:

pages

- Fungicides
- Insecticides
- Nematicides
- Plant Growth Regulators

"Probability of cost-effective management of soybean aphid in North America" 2009. Johnson et al. https://doi.org/10.1603/029.102.0613

4 methods compared in 3 states over 3 years*

- 1. untreated **control** = no insecticides.
- **2. Prophylactic** = insecticide & fungicide applied to foliage when soybeans flower.
- **3.** Seed-treatment = Cruiser only.
- **4. IPM** approach = fields scouted and insecticide applied as needed.

*Johnson et al. 2009. Journal of Economic Entomology 102: 2101-2108.

Not all insecticide use pays off. gain threshold = break even point

Table 6. Probability of yield gain from treatments exceeding the gain threshold at four soybean prices

Scouting	Treatment	Probability by soybean price per 27.2 kg ^a				
COSt		\$6.00	\$8.00	\$10.00	\$12.00	
\$0.00 per ha	IPM	0.81	0.83	0.84	0.85	
\$19.76 per ha	IPM	0.69	0.74	0.77	0.79	
NA	Prophylactic	0.51	0.63	0.70	0.74	
NA	Seed-treatment	0.43	0.47	0.50	0.51	

^{*a*} 27.2 kg = 1 US bushel.

*Johnson et al. 2009. Journal of Economic Entomology 102: 2101-2108.

"High-Input Management Systems Effect on Soybean Seed Yield, Yield Components, and Economic **Break-Even Probabilities**" 2016. Orlowski et al. https://acsess.onlinelibrary.wiley.com/doi/full/10.2135/cropsci 2015.10.0620

"In each site-year both individual inputs and combination high-input (SOYA) management systems were tested."*

Table 3. Additional marginal costs for inputs over the standard practice for experiments in 2012, 2013, and 2014.

	Additional cost, \$ ha ⁻¹ ‡				
Input†	2012	2013, 2014			
Fungicide ST	21.61	21.61			
Fungicide+Insecticide ST	52.49	52.49			
Max ST	59.90	59.90			
Defoliant	44.73	44.73			
Nitrogen	109.22	109.22			
Foliar fertilizer	46.93	46.93			
N,N'-diformyl urea	51.38	51.38			
Foliar Fungicide	63.92	96.08			
Foliar Insecticide	29.66	34.06			
Foliar Fungicide+Insecticide	73.83	110.38			
SOYA	341.26	377.81			
SOYA+D	385.99	422.54			
SOYA-N	232.03	268.59			
SOYA-FF	277.33	281.73			
SOYA-FF and FI	267.43	267.43			

‡ Costs differ between 2012 and 2013, 2014 due to the use of different input products.

sidered the South region, while states sidered the North region. *Orlowski et al. 2016

A single application of an insecticide paid for itself 37%-93% of the time, fungicide-insecticide seed treatment did 0-29%.

Table 8. Relative yield change and break-even probabilities for inputs compared to the standard practice at multiple yield levels and soybean sale prices across all environments between 2012 and 2014.

		Yield level, Mg ha-1									
			3.0			4.0			5.0		
						Soybean sale price, \$ kg ⁻¹					
Input†	RYC‡	0.33	0.44	0.55	0.33	0.44	0.55	0.33	0.44	0.55	
	64				06 norshe	ability of br	ook men				
Fungicide ST	-0.2	5	-11	17	11	18	24	17	24	29	
Fungicide+Insecticide ST	0.5	0	0	1	0	2	5	1	5	10	
Max SI	1.7	0	2	11	2	15	31	11	31	48	
Foliar fertilizer	0.7	0	2	6	2	8	17	6	17	27	
Defoliant	-2.5	0	0	0	0	0	0	0	0	1	
Nitrogen	1.7	0	0	0	0	0	1	0	1	7	
N,N*-diformyl urea	0.5	0	0	2	0	3	8	2	8	15	
Foliar funcicide	2.5	0	0	0	0	1	5	0	5	17	
Foliar insecticide	2.7	37	64	78	64	81	88	78	88	93	
Foliar fungicide+Insecticide	4.9	0	1	13	1	21	59	13	59	85	
SOTA	1.94	0	0	0	0	0	0	0	v	U	
SOYA+D	4.9	0	0	0	0	0	0	0	0	0	
SOYA-N	5.2	0	0	0	0	0	0	0	0	0	
SOYA-FF	5.6	0	0	0	0	0	0	0	0	0	
SOYA-FF+FI	3.7	0	0	0	0	0	0	0	0	0	

† ST, seed treatment; FF, foliar fungicide; FI, foliar insecticide; D, defoliant; SOYA, combination high-yield management.

‡ RYC, relative yield change vs. standard practice.

"A Machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north-central US. 2021. Shah et al.

https://doi.org/10.1038/s41598-021-98230-2

Maturity group • 0 • I • II • III • IV

Supplementary Figure S1. Locations of soybean fields for which surveyed growers supplied self-reported data on their management practices and yields, 2014 to 2016. Field locations are colored by soybean maturity group.

"A Machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north-central US. 2021. Shah et al.

"Feature importance" = how much does each factor help predict soybean yield.

Insecticide evaluations continue...

IOWA STATE UNIVERSITY Extension and Outreach

2020 REPORT OF INSECTICIDE EVALUATION

Department of Entomology Ames, Iowa 50011-3140

> Soybean Pest Investigated: Soybean Aphid Japanese Beetle Soybean Gall Midge

Project Leader: Erin Hodgson

Project Co-Leaders: Greg VanNostrand Ashley Dean Mitchell Helton

https://store.extension.iastate.edu/product/16055

Table 1. List of treatments and rates for soybean aphid at the Northwest Research Farm in 2020

Seed treatment only

> X Χ

Χ

Х

X X

X

Χ

Seed

AND foliar-

applied

insecticide \mathbf{X}

treatment

Treatment and Formulation	Group ^a	Active Ingredient(s) ^b	Rate	Timing	
1. Untreated Control					
2. Warrior II CS	3A	lambda-cyhalothrin	1.92 fl oz	11 Aug	
3. Sniper EC	3A	bifenthrin	4.0 fl oz	11 Aug	
4. Cruiser 5FS (A)	4A	thiamethoxam (ST)	0.0756 mg ai/seed		
5. Cruiser 5FS (B)	4A	thiamethoxam (ST)	0.1512 mg ai/seed		
6. Transform WG (A)	4C	sulfoxaflor	0.66 oz	11 Aug	
7. Transform WG (B)	4C	sulfoxaflor	0.794 oz	11 Aug	
8. Pyrifluquinazon SC (A)	9B	pyrifluquinazon	0.8 fl oz	11 Aug	
9. Pyrifluquinazon SC (B)	9B	pyrifluquinazon	1.2 fl oz	11 Aug	
10. Pyrifluquinazon SC (C)	9B	pyrifluquinazon	1.6 fl oz	11 Aug	
11. Sefina DC	9D	afidopyropen	3.0 fl oz	11 Aug	
12. Cruiser 5FS and Warrior II CS (A)	4A 3A	thiamethoxam (ST) lambda-cyhalothrin	0.0756 mg ai/seed 1.92 fl oz	 11 Aug	
13. Cruiser 5FS and Warrior II CS (B)	4A 3A	thiamethoxam (ST)lambda-cyhalothrin	0.1512 mg ai/seed 1.92 fl oz	 11 Aug	
14. Leverage 360 SC	4A + 3A	imidacloprid + beta-cyfluthrin	2.8 fl oz	11 Aug	
15. Endigo ZCX (A)	3A + 4A	lambda-cyhalothrin + thiamethoxam	3.5 fl oz	11 Aug	
16. Endigo ZCX (B)	3A + 4A	lambda-cyhalothrin + thiamethoxam	4.5 fl oz	11 Aug	
17. CruiserMaxx Vibrance + Saltro FS	$4A + 7^{d}$	thiamethoxam + pydiflumetofen (ST)	0.1695 mg ai/seed		
18. CruiserMaxx Vibrance FS + Saltro FS and Warrior II CS	4A + 7 ^d 3A	thiamethoxam + pydiflumetofen (ST) lambda-cyhalothrin	0.1695 mg ai/seed 1.92 fl oz	 11 Aug	

Aphid populations low in 2020*.

Figure 1. Mean number of aphids per plant in 2020 at the Northwest Research Farm.

*and even lower in 2021 and 2022

Limited to no difference in yield among the various insecticide treatments. **X** = plots grown with a seed treatment

Yield (bushels per acre) + SEM

"Beyond the Headlines: The influence of insurance pest management on an unseen silent entomological majority." 2020. Krupke and Tooker. https://doi.org/10.3389/fsufs.2020.595855 2-3% Lost as dust at planting Schaafsma et al. (2018)

UP TO 1.25 MG CLOTHIANIDIN OR THIAMETHOXAM/SEED

2-3% Taken up by plants, yield benefits in <5-8% of fields

Alford and Krupke (2017), Labrie et al. (2020), Smith et al. (2020)

90%+ Into water/soil, non-crop plants

Aquatic invertebrates exposed in water and sediments. Morrissey et al. (2015), Miles et al. (2017)

Absorbed by aquatic plants Alford and Krupke (2019) Protection from root-feeding pests for max. of 2-3 wk Alford and Krupke (2017),

Krupke et al., (2017b)

Agriculture, Ecosystems & Environment

Agriculture Ecosystems & Environment

Volume 325, 28 February 2022, 107723

Quantifying neonicotinoid insecticide residues in milkweed and other forbs sampled from prairie strips established in maize and soybean fields

Maura J. Hall ^{a, b}, Ge Zhang ^{a, 1}, Matthew E. O'Neal ^a, Steven P. Bradbury ^{a, b, c}, Joel R. Coats ^{a, b} $\stackrel{>}{\sim}$ 🖾

Looking for clothianidin, imidacloprid, and thiamethoxam in soil, leaf and bees.

Location	% detects of neonicotinoids	Limits of quantification (ng/g)
Soil*	100%	0.07-0.9
plant tissue*	80%	0.1-0.3
Nectar**	15.5%	0.09-0.2
Pollen**	2.45%	0.5
Nurse worker bees**	0.12%	0.5-1

*Hall et al. 2022 **Hall et al. In preparation

Conclusions from Hall et al.

- Neonics found in prairie strips, soil, plants, pollen and nectar. (Hall et al. 2022 and in prep)
- Frequency and concentrations declines from soil to nectar. (Hall et al. 2022 and in prep)
- Concentrations are orders of magnitude below the $\rm LC_{10}$ for monarch larvae. (Hall et al. 2022)
- We observed no honey bee colony deaths in the 3 years of this study. (Zhang et al. in review)