Reframing the conversations around agricultural soil carbon

Steven J. Hall Associate Professor Dept. of Ecology, Evolution, and Organismal Biology Iowa State University

stevenjh@iastate.edu

Take-home points

- 1. Changes in farm practices may (or may not) influence soil organic carbon content
- 2. Even when carbon content doesn't change, farmers and the environment can strongly benefit from diversified cropping systems
- 3. Despite the "buzz" around soil carbon, we should assess environmental benefits of farming practices from a holistic perspective

Context:

A new spotlight on agricultural soil management as a climate solution

- Billions of dollars in funding is now directed at soil management to "sequester" carbon
- Need to constrain these markets with sound science
- Need to consider how soil carbon relates to farm management and broader environmental issues

Table 1. How Voluntary Agricultural Carbon Programs Address Critical Structural Considerations											
	Agoro	Bayer	CIBO	Corteva	ESMC	Gradable	Indigo	Nori	SWOF		
PAYMENTS: Per output	~		~	*	~	~	~	~	~		
Per practice		~									

Plastina 2022: The US Voluntary Agricultural Carbon Market

- How many of you have measured any of the following at your farm:
 - Soil organic matter
 - Soil carbon
 - Soil organic carbon

- How many of you have measured any of the following at your farm:
 - Soil organic matter
 - Soil carbon
 - Soil organic carbon
- **Caution**: these are not necessarily equivalent measurements

- How many of you have measured any of the following at your farm:
 - Soil organic matter
 - Soil carbon
 - Soil organic carbon
- Caution: these are not necessarily equivalent measurements
 - What about potentially mineralizable carbon or soil respiration?

• **Soil organic matter (SOM)**: material produced by living organisms (mostly plants and microbes)

- **Soil organic matter (SOM)**: material produced by living organisms (mostly plants and microbes)
 - **Method**: typically measured by burning a soil sample and measuring change in mass (loss on ignition)
 - Benefits of measurement:
 - Inexpensive
 - Useful for comparing soils over time, or within a region (with similar mineralogy)

- **Soil organic matter (SOM)**: material produced by living organisms (mostly plants and microbes)
 - **Method**: typically measured by burning a soil sample and measuring change in mass (loss on ignition)
 - Benefits of measurement:
 - Inexpensive
 - Useful for comparing soils over time, or within a region (with similar mineralogy)
 - Cautions:
 - Influenced by mineral composition
 - Not a direct measure of carbon
 - Measurements often not comparable among labs (different combustion temperatures)
 - Typically not suitable for carbon markets

• **Soil carbon**: includes carbon in soil organic matter (**SOC**), and possible inorganic carbon (carbonate minerals)

- **Soil carbon**: includes carbon in soil organic matter (**SOC**), and possible inorganic carbon (carbonate minerals)
 - Method: typically measured by dry combustion and elemental analysis
 - Benefits of measurement:
 - Equivalent to SOC if no carbonate is present
 - SOC, not total C, is most relevant for climate and soil health

- **Soil carbon**: includes carbon in soil organic matter (**SOC**), and possible inorganic carbon (carbonate minerals)
 - Method: typically measured by dry combustion and elemental analysis
 - Benefits of measurement:
 - Equivalent to SOC if no carbonate is present
 - SOC, not total C, is most relevant for climate and soil health
 - Cautions:
 - Measurements can be expensive
 - Need to test whether carbonate is present, and remove it or measure it
 - pH < 7, carbonate is unlikely (unless lime was recently applied)
 - pH >7, carbonate is possible
 - pH > 7.5, carbonate is likely
 - Accounting for carbonate is controversial even in the soil research community
 - Dealing with carbonate is an underappreciated challenge for commercial labs

Take-home points

- 1. Changes in farm practices may (or may not) influence soil organic carbon content
- 2. Even when carbon content doesn't change, farmers and the environment can strongly benefit from diversified cropping systems
- 3. Despite the enormous "buzz" around soil carbon, we should assess environmental benefits of farming practices from a holistic perspective

- How much do you expect SOC to increase in a conventional corn/soybean system following adoption of:
 - A winter rye cover crop
 - No-till management
- Please express your answer as an annual percent change from the initial soil carbon value

• Summary of SOC change (0-30 cm) with cover crops (any species), at global scale

• Summary of SOC change (0-30 cm) with cover crops (any species), at global scale

Response ratio: (Cover crop / no cover crop)

• Summary of SOC change (0-30 cm) with cover crops (any species), at global scale

Response ratio: (Cover crop / no cover crop)

• Summary of SOC change (0-30 cm) with cover crops (any species), at global scale

Response ratio: (Cover crop / no cover crop)

Key point: most of the response ratios were close to zero (20% were negative)!

• Average SOC change of **0.2** Mg C ha⁻¹ y⁻¹

• Summary of SOC change (0-30 cm) with cover crops (any species), at global scale

Response ratio: (Cover crop / no cover crop)

Key point: most of the response ratios were close to zero (20% were negative)!

- Average SOC change of **0.2** Mg C ha⁻¹ y⁻¹
- Compare to typical 0-30 cm SOC stock of ~100 Mg C ha⁻¹ for north-central Iowa

• Summary of SOC change (0-30 cm) with cover crops (any species), at global scale

Average SOC change of 0.2 Mg C ha⁻¹ y⁻¹

- Compare to typical 0-30 cm SOC stock of ~100 Mg C ha⁻¹ for north-central Iowa
- Cover crop growing window and productivity were key explanatory
 variables

Key point: most of the response ratios

were close to zero (20% were negative)!

Response ratio: (Cover crop / no cover crop)

• Summary of SOC change (0-30 cm) with cover crops (any species), at global scale

Key point: most of the response ratios were close to zero (20% were negative)!

- Average SOC change of **0.2** Mg C ha⁻¹ y⁻¹
- Compare to typical 0-30 cm SOC stock of ~100 Mg C ha⁻¹ for north-central Iowa
- Cover crop growing window and productivity were key explanatory variables

A local example of limited SOC change following 10 y of cover crop management

- Comparison of Biofuel Systems (COBS) experiment near Boone, IA
 - Initiated by Matt Liebman and colleagues at ISU

A local example of limited SOC change following 10 y of cover crop management

• Comparison of Biofuel Systems (COBS) experiment near Boone, IA

A11

1 2020

• Initiated by Matt Liebman and colleagues at ISU

	Treatment	Depth (cm)	рН	SOC (mg/g)	treatments	
Continuous corn	CC	0–25	6.7 (0.1) ^{aA}	18.9 (1.5) ^{aA}	managed with no-till	
		25–50	6.6 (0.2) ^{aA}	11.1 (2.2) ^{aB}		
		50-75	7.2 (0.2) ^{aAB}	4.7 (1.4) ^{aBC}		
		75–100	7.7 (0.0) ^{aB}	2.5 (0.6) ^{aC}		
Continuous corn with cereal rye cover crop	CCW	0–25	6.5 (0.2) ^{aA}	16.8 (2.2) ^{aA}		
		25–50	6.4 (0.1) ^{aA}	9.6 (2.2) ^{aAB}		
		50-75	6.6 (0.1) ^{aAB}	5.2 (1.6) ^{aB}		
		75–100	7.1 (0.2) ^{aB}	2.9 (1.0) ^{aB}	Ye and Hall 202	
					GCB-Bioenergy	

SOC often increases with no-till management

• Summary of SOC change following no-till in fine-textured soils in cool temperate moist climates

Key point: most of the SOC change was in the top 10 cm

 Average SOC change of 0.27 Mg C ha⁻¹ y⁻¹

> Ogle et al. 2019 Sci. Rep.

SOC often increases with no-till management

• Summary of SOC change following no-till in fine-textured soils in cool temperate moist climates

Key point: most of the SOC change was in the top 10 cm

- Average SOC change of 0.27 Mg C ha⁻¹ y⁻¹
- Compare to typical 0-30 cm SOC stock of ~100 Mg C ha⁻¹ for north-central Iowa

Ogle et al. 2019 Sci. Rep.

- How do *diversified cropping systems* impact SOC?
- How much do you expect SOC to increase in a typical corn/soybean system after...
 - Including a small grain and clover (three-year rotation), + manure
 - Including a small grain, and then alfalfa (four-year rotation) + manure
- Please express your answer as an annual percent change from the initial soil carbon stock

A local example of limited SOC change following 20 y of diversified rotations

- Marsden farm experiment near Boone, IA
- Initiated by Matt Liebman at ISU
- 2, 3, and 4-y rotations
- Each phase of the rotation is replicated each year
- All managed with tillage

A local example of limited SOC change following 20 y of diversified rotations

- Soil sampled in fall 2021 to 1 m depth
- Extended rotations had lower SOC, on average, than the two-year rotation

Huang et al., unpublished

A local example of limited SOC change following 20 y of diversified rotations

- Soil sampled in fall 2021 to 1 m depth
- Extended rotations had lower SOC, on average, than the two-year rotation
- 194 vs. 200 Mg C ha⁻¹
- Similar trend as previous data from 2014 (Poffenbarger et al. 2020, Agr. Eco. Envir.)

Huang et al., unpublished How to interpret the lack of SOC change in a diversified cropping systems experiment?

- Was there simply no change in carbon cycling among treatments?
 - No; the extended rotations had greater root inputs, but slightly lower overall residue inputs

How to interpret the lack of SOC change in a diversified cropping systems experiment?

- Was there simply no change in carbon cycling among treatments?
 - No; the extended rotations had greater root inputs, but slightly lower overall residue inputs
- How might differences in root inputs impact carbon cycling?

Take-home points

- 1. Changes in farm practices may (or may not) influence soil organic carbon content
- 2. Even when carbon content doesn't change, farmers and the environment can strongly benefit from diversified cropping systems
- 3. Despite the enormous "buzz" around soil carbon, we should assess environmental benefits of farming practices from a holistic perspective

Respiration (CO₂ production) is a useful soil health metric

- Microbes respire oxygen and release carbon dioxide (CO₂) when they decompose organic matter
- Some commercial labs measure "potentially mineralizable carbon" (CO₂ produced after wetting dry soil)
- Researchers often measure CO₂ production from soils in the lab to assess microbial activity

Soil respiration (CO₂ production) increased in extended crop rotations

- We incubated intact soil cores in the laboratory for almost one year
- Greater CO₂ production indicates a combination of greater residue inputs and greater microbial activity
- How then might we explain the lack of SOC change?

Huang et al., unpublished Simple cartoon illustrating potential tradeoffs between SOC storage and N supply from organic matter

Recall that the overwhelming majority of soil N is stored in organic matter

Simple cartoon illustrating potential tradeoffs between SOC storage and N supply from organic matter

Plants release sugars known as "exudates" to feed their microbiome

Microbial growth

ullet

- Carbon has two stable isotopes: ¹²C and ¹³C
- Warm-season grasses such as corn are "C₄ plants" and differ from most other plants ("C₃ plants") in the ratio of these isotopes

- Carbon has two stable isotopes: ¹²C and ¹³C
- Warm-season grasses such as corn are "C₄ plants" and differ from most other plants ("C₃ plants") in the ratio of these isotopes
- We can use stable isotopes to measure C inputs and losses from soil!
- Specifically, we can say how much carbon from corn the microbes decomposed, vs. other sources

Evidence that extended rotations can increase the diversified of SOC

- As expected, the extended rotations decomposed more C derived from C₃ plants
- This is because soybeans, oats, clover, and alfalfa are all C₃ plants

- Corn C inputs to the fouryear soils are about half as much as in the two-year soils
- Yet, the extended rotations decomposed just as much C from C₄ plants as the conventional rotation!
- This means that soils in the extended rotations are likely decomposing *older* SOC...

How to think about agricultural soil carbon?

- Soils are not just buckets for storing organic matter
- SOC doesn't necessarily increase simply because residue inputs increase
- Increased decomposition may offset increased residue inputs
- However, there are key benefits of increased microbial activity...

These diversified crop rotations required lower N fertilizer inputs

Table 1. Nutrient N and P Applications via Fertilizer and Composted Manure During 2008–2016 Averaged over All Crop Phases of Each Rotation System

	crop rotation system		
	2 year (kg ha ⁻¹ yr ⁻¹)	3 year (kg ha ⁻¹ yr ⁻¹)	4 year (kg ha ⁻¹ yr ⁻¹)
fertilizer N	89	13	8
fertilizer P	15	0	9
manure N	0	46	34
manure P	0	15	11

N rates were determined using the late-spring soil nitrate test

- Synthetic N inputs were ~90% lower in the extended rotations
- Net profitability was similar

Hunt et al., 2019 Env. Sci. Tech

These diversified crop rotations were also more productive per unit fossil energy input

- Fossil energy consumption was tabulated for all aspects of crop production
- Then, it was divided by the harvest crop yields

Hunt et al., 2020 Env. Sci. Tech

Cover crops can benefit water quality even without increasing SOC

• Recall that there was no difference in SOC between continuous corn grown with and without a rye cover crop, at the COBS experiment

Cover crops can benefit water quality

- Recall that there was no difference in SOC between continuous corn grown with and without a rye cover crop, at the COBS experiment
- Using isotopes, we found that C from the cover crop accounted for about 10% of respiration at the soil surface

Ye and Hall 2020

GCB-Bioenergy

Cover crops can benefit water quality even without increasing SOC

- Recall that there was no difference in SOC between continuous corn grown with and without a rye cover crop, at the COBS experiment
- Using isotopes, we found that C from the cover crop accounted for about 10% of respiration at the soil surface
- But, the cover crop supplied ~30% of respiration at a depth of 50 cm to 100 cm
- Increased biological activity may benefit water quality even if SOC doesn't increase:
 - Mean nitrate leaching was 58% lower in the cover-cropped corn (Daigh et al. 2015, J. Environ. Qual.)

Take-home points

- 1. Changes in farm practices may (or may not) influence soil organic carbon content
- 2. Even when carbon content doesn't change, farmers and the environment can strongly benefit from diversified cropping systems
- 3. Despite the enormous "buzz" around soil carbon, we should assess environmental benefits of farming practices from a holistic perspective

Questions for you:

• Increased atmospheric CO₂ resulting fossil fuel combustion is the primary cause of recent climate change

Questions for you:

- Increased atmospheric CO₂ resulting fossil fuel combustion is the primary cause of recent climate change
- Which greenhouse gas is the largest source of current climate warming from typical corn/soybean systems in the US Corn Belt?
 - a) Carbon dioxide (CO₂)
 - b) Methane (CH₄)
 - c) Nitrous oxide (N₂O)

- Conservative upper bound of soil C gain in the humid Corn Belt:
 - ~ **1600** kg CO₂-eq ha⁻¹ y⁻¹ (restored prairie; Matamala et al. 2008)
- Estimated C gains from cover crops
 - ~800 1200 kg CO₂-eq ha⁻¹ y⁻¹ (Poeplau and Don et al. 2015: McClelland et al. 2021)
- Estimated C gain from decreased tillage
 - ~1,000 kg CO_2 -eq ha⁻¹ y⁻¹ from cool, moist, fine-grained soil (Ogle et al. 2019)

- Conservative upper bound of soil C gain in the humid Corn Belt:
 - ~ **1600** kg CO₂-eq ha⁻¹ y⁻¹ (restored prairie; Matamala et al. 2008)
- Estimated C gains from cover crops
 - ~800 1200 kg CO₂-eq ha⁻¹ y⁻¹ (Poeplau and Don et al. 2015: McClelland et al. 2021)
- Estimated C gain from decreased tillage
 - ~1,000 kg CO₂-eq ha⁻¹ y⁻¹ from cool, moist, fine-grained soil (Ogle et al. 2019)
- Greenhouse gas emissions from synthetic N *production*
 - ~ **350** kg CO₂-eq ha⁻¹ y⁻¹(Liu et al. 2020)

- Conservative upper bound of soil C gain in the humid Corn Belt:
 - ~ 1600 kg CO₂-eq ha⁻¹ y⁻¹ (restored prairie; Matamala et al. 2008)
- Estimated C gains from cover crops
 - ~800 1200 kg CO₂-eq ha⁻¹ y⁻¹ (Poeplau and Don et al. 2015: McClelland et al. 2021)
- Estimated C gain from decreased tillage
 - ~1,000 kg CO_2 -eq ha⁻¹ y⁻¹ from cool, moist, fine-grained soil (Ogle et al. 2019)
- Greenhouse gas emissions from synthetic N *production*

• ~ 350 kg CO_2 -eq ha⁻¹ y⁻¹(Liu et al. 2020)

- Direct nitrous oxide emissions from central IA corn/soybean soils
 - ~3,700 kg CO₂-eq ha⁻¹ y⁻¹ (Lawrence et al., 2021)

How to decrease N₂O emissions?

- Simplest answer: decrease synthetic N fertilizer application.
 - Rough estimate: a 20% decrease in N rate may decrease N_2O by 25%
 - In CO₂ equivalents, this is similar to average SOC gains from cover crops and no-till (about 1000 kg CO₂-eq ha⁻¹ y⁻¹)

How to decrease N₂O emissions?

- Simplest answer: decrease synthetic N fertilizer application.
 - Rough estimate: a 20% decrease in N rate may decrease N_2O by 25%
 - In CO₂ equivalents, this is similar to average SOC gains from cover crops and no-till (about 1000 kg CO₂-eq ha⁻¹ y⁻¹)
- More complicated / contentious answers:
 - Precision N management
 - Nitrification inhibitors?
 - Improved drainage?
 - Biochar?
- However, we've already discussed a system that can dramatically decrease synthetic N inputs without sacrificing profitability...

These diversified crop rotations required lower N fertilizer inputs

Table 1. Nutrient N and P Applications via Fertilizer and Composted Manure During 2008–2016 Averaged over All Crop Phases of Each Rotation System

	crop rotation system		
	2 year (kg ha ⁻¹ yr ⁻¹)	3 year (kg ha ⁻¹ yr ⁻¹)	4 year (kg ha ⁻¹ yr ⁻¹)
fertilizer N	89	13	8
fertilizer P	15	0	9
manure N	0	46	34
manure P	0	15	11

N rates were determined using the late-spring soil nitrate test

- Synthetic N inputs were ~90% lower in the extended rotations
- Net profitability was similar
- See Matt Liebman for further questions about the Marsden experiment

Hunt et al., 2019 Env. Sci. Tech

These diversified crop rotations had much lower greenhouse gas emissions

- Note: the N₂O emissions were estimated from a simple model
- Our measurements from a nearby site indicate that real N₂O fluxes are likely two or three-fold greater! (Lawrence et al. 2021, PNAS)

Implications for carbon markets

- Practices such as no-till and cover crops *can* potentially increase SOC...
- But results are context-dependent, and may not be detectable
- Diversified cropping systems may have little effect on SOC but may have large effects on soil biological processes
- Cropping systems that decrease synthetic N inputs may have greatest climate benefit (decreased N₂O emissions) even if they do not store additional SOC
- The same logic likely holds true for water quality improvement

Acknowledgements

- Dr. Matt Liebman, ISU faculty emeritus, for initiating and providing access to the Marsden and COBS experiments (now managed by Dr. Michael Thompson and Dr. Marshall McDaniel)
- **Drs. Wenjuan Huang and Chenglong Ye**, who led several of the soil carbon studies mentioned above
- Numerous other staff and students, especially Matt Woods and Carlos Tenesaca
- Funding from USDA, NSF, the Iowa Nutrient Research Center, and GRER (U. of Iowa), Leopold Center for Sustainable Agriculture

CENTER FOR Global & Regional Environmental Research

Question: where in this field is the soil "healthiest"?

~1 km

- a) In the dark green areas (uplands)
- b) In the light green areas (slopes)
- c) In the purple areas (depressions)

McDeid et al. 2018, Wetlands

Is this a "healthy" soil?

Image: the bottom of a farmed pothole depression near Ames, IA in June 2018

Huang et al., in review

SOC was much greater in depressions than uplands

- Systematic increase in SOC (0 30 cm) in depressions
- Threshold change in isotope composition of SOC at depression boundaries

Huang et al, in review

SOC was much greater in depressions than uplands

- Systematic increase in SOC (0 30 cm) in depressions
- Threshold change in isotope composition of SOC at depression boundaries

Huang et al, in review

SOC was much greater in depressions than uplands

- Variation in SOC among samples was best explained by silt and clay
- Erosion has led to accumulation of pre-agricultural SOC in depressions

Huang et al, in review

Soil respiration and its sources did not vary between depressions and uplands

Elevation relative to depression boundary (m)

• Perhaps soil respiration is a better metric of soil health in this case?

Soil respiration and its sources did not vary between depressions and uplands

• Perhaps soil respiration is a better metric of soil health in this case?
Key point: SOC is a legacy of the landscape

- Glaciers and more than a century of erosion have shaped the distribution of SOC in our region
- SOC content changes slowly
- Assessing impacts of practice changes on SOC is a four-dimensional problem!
- Other measures of soil health (e.g. soil respiration) may be more sensitive

McDeid et al. 2018, Wetlands

The "soil carbon dilemma":

Attempting to hoard as much organic matter as possible in the soil, like a miser hoarding gold, is not the correct answer. Organic matter functions mainly as it is decayed and destroyed. Its value lies in its dynamic nature.

- Quote from William Albrecht, 1938 USDA yearbook of agriculture (as cited in Janzen 2006, Soil Biol Biochem)
- From a modern perspective, we now know that it is difficult to "hoard" soil carbon, even if we wanted to
- All carbon decomposes, it is simply a matter of how fast or slow!