Nashua, IA long-term average air T and 3-year average 50" soil T

Average daily temperature at Nashua, IA from November through March for three consecutive years, degrees F, and the average 50" soil temperature

Seasonal soil temperature change as a function of depth below ground surface for an average moist soil.

- A heat pump system with a Coefficient Of Performance (COP) of 4 means that a quarter of the building heat is provided from operation of the electrical components associated with the heat pump and three quarters comes from ground heat

- A heat pump system with a Coefficient Of Performance (COP) of 4 means that a quarter of the building heat is provided from operation of the electrical components associated with the heat pump and three quarters comes from ground heat

- Collecting ground heat can usually be done with little energy use and expense. Operating the heat pump itself is expensive, but because it can take advantage of very low-cost ground heat the heat pump system provides heat at very low cost

- A heat pump system with a Coefficient Of Performance (COP) of 4 means that a quarter of the building heat is provided from operation of the electrical components associated with the heat pump and three quarters comes from ground heat

- Collecting ground heat can usually be done with little energy use and expense. Operating the heat pump itself is expensive, but because it can take advantage of very low-cost ground heat the heat pump system provides heat at very low cost

- Heating or cooling applications that don't require our comfort don't necessarily need the heat pump, which is a very expensive part of the system. Then, although the ground heat collection system installation can be expensive up front, we can have a very inexpensive geothermal heat source for years to come.

Comparative cost for one million BTUs

Decreasing Energy Use and Cost of Grain Drying by Extending the Drying Period Using Ground-Stored Heat

- Eric Jellum, project coordinator
- Funded by USDA-Sustainable Agriculture Research and Education: Farmer/Rancher Grant Program
- Project number FNC17-1080

GRUNDFOS'

NONSUBMERSIBLE CIRCULATION PUMPType UPS 1558 FCP/N:59896341 P1115 V1 PH60 Hz

1/1(A)	P1(W)	
.55	60	
.66	80	
.75	87	

10 uF

Class F

US

IMPEDANCE PROTECTED

FOR INDOOR USE ONLY MAX FLUID TEMP. 230 F

Establishing a Temperature Gradient to Enhance Geothermal Heating and Cooling of a High Tunnel

- Eric Jellum, project coordinator, and Steve Strasheim (Twisted River Farm)
- Funded by USDA-Sustainable Agriculture Research and Education: Farmer/Rancher Grant Program
- Project number FNC21-1278

Nashua, IA long-term average air T and 3-year average 50" soil T

Since a greenhouse or high tunnel is also a solar collector, solar heat should also be considered in the design of the heating system

Through the most demanding part of the heating season, December through February, soil T will continue to decline. Solar radiation bottoms out in December and increases through February. A geothermal loop beneath the footprint of the greenhouse could function as both a heat source at night and a heat sink during the day to store excess solar heat and increase soil temperatures.

Nashua, IA low air T and 50" soil T for November, 2022 through March, 2023

Temperatures during recent cold spell (mainly January 13-17) of soil at 8' depth, ground loop fluid into and out of heat exchangers, air coming from fan, and greenhouse air as a function of ambient air temperature

Summary

Low-temperature geothermal applications like corn drying and greenhouse heating are ideal and inexpensive uses of ground-stored heat and involve very little use of fossil energy. The intended project to evaluate a geothermal heating system under the footprint of the greenhouse that could operate as a diurnal heat source at night and heat sink for excess solar gain during the day was not accomplished. Instead, a deeper ground loop external to the greenhouse was successfully evaluated. The original design for the heating system has merit and should still be tested.

Questions, suggestions, and discussion

Eric Jellum jellumfm@gmail.com