Exploring Oat and Pea Varieties for Intercropping as Forage

Juan David Arbelaez Velez Milcah Kigoni – Research Assistant University of Illinois at Urbana-Champaign

L ILLINOIS Crop Sciences DLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

U.S. oat production before

Crop Sciences college of agricultural, consumer & environmental sciences

U.S. oat production now

Source: USDA NASS (https://www.nass.usda.gov/).

IILLINOIS

& ENVIRONMENTAL SCIENCES

COLLEGE OF AGRICULTURAL, CONSUMER

Crop Sciences

Importance of oat

- It is a good source of dietary fiber, protein, fat, and minerals.
- Help treatment of diabetes and cardiovascular diseases.
- Oat included in crop rotations can help break diseases and weed cycles, as well as herbicide use.
- Diversify cropping systems.

Let's keep breeding oats – UIUC program

Let's keep breeding oats - UIUC program

Source: The author.

Source: Grain Millers. https://www.grainmillers.com

UIUC oat genetic gain: productivity

Grain yield bu/ac

Year of release

Source: Scheffel et al. (in preparation)

UIUC oat genetic gain: milling quality

Thins % ('plump grains')

Year of release

Groat % ('milling yield')

Source: Grundy et al. 2019, & Grain Millers (https://www.grainmillers.com/)

Effects of temperatures on oat

Grain yield bu/ac

Year of release

Test weight lb/bu

Temperature Grain yield bu/ac

Temperature Test weight lb/bu

Daily Min. temperature

Source: Scheffel et al. (in preparation)

Mission

- Develop new breeding tools, methods, & strategies to:
 - Improve the quality and nutritional value of crops.
 - Ameliorate the effects of climate change on agriculture.
 - o Increase crop diversity & sustainability.

Improve quality & nutritional value

Crop Sciences college of agricultural, consumer & environmental sciences

Ameliorate the effects of climate change

36	128	146	4	46	203	204	175	167	76	202	136	231	28	17	192	33	43	31	143	148
35	62	201	186	207	212	183	13	27	42	155	18	218	80	3	151	2	137	176	64	45
34	65	68	226	50	159	69	110	132	222	92	114	60	5	44	227	70	211	178	66	236
33	111	117	88	145	154	79	173	26	57	54	197	118	32	113	15	239	206	53	240	86
32	199	168	131	84	141	225	75	104	139	6	106	30	182	87	180	179	9	23	133	177
31	12	219	220	144	115	83	191	214	156	85	116	20	34	238	8	150	124	72	51	196
30	49	35	103	94	7	81	170	100	126	1	213	119	89	121	162	71	153	184	107	56
29	120	230	10	90	215	24	174	210	188	82	125	205	147	229	11	109	48	163	160	216
28	16	93	108	138	14	166	112	25	39	102	189	134	233	198	63	61	21	55	98	91
27	99	140	228	161	223	185	142	67	36	194	234	22	96	195	172	47	221	40	165	171
26	73	41	237	97	19	158	59	130	122	135	52	77	164	74	200	101	78	123	58	187
25	208	232	29	190	217	157	127	38	181	152	149	105	224	95	209	169	129	235	193	37
24	103	194	217	169	222	82	31	87	186	56	99	24	68	233	130	138	8	137	133	117
23	75	185	207	15	29	109	60	230	36	14	240	1	123	51	91	28	65	121	167	181
22	223	37	166	43	21	213	219	2	210	67	238	131	57	11	119	66	158	80	208	84
21	156	46	52	81	229	175	88	5	7	225	25	40	.111	77	179	155	160	127	218	63
20	231	53	104	106	170	122	200	108	79	64	161	124	13	232	44	215	134	120	34	70
19	132	197	92	55	164	143	49	171	163	237	126	144	95	128	173	115	129	30	45	18
18	149	227	48	42	165	236	101	20	135	94	105	239	204	23	62	26	195	93	198	203
17	78	39	191	27	196	140	17	154	112	209	10	73	182	47	145	162	202	114	50	205
16	32	16	184	74	22	9	96	76	116	102	183	212	150	226	193	174	35	97	141	148
15	98	19	220	142	201	3	190	235	192	12	211	136	100	54	69	168	177	216	188	89
14	146	71	118	85	90	151	147	58	199	206	33	38	189	187	228	234	139	72	178	152
13	113	180	172	86	6	157	214	153	224	125	159	110	4	83	41	59	176	107	61	221
12	35	38	183	86	224	213	47	215	160	70	237	18	198	222	228	75	46	182	93	12
11	85	80	87	105	109	208	200	111	115	69	202	165	97	63	104	153	226	117	136	185
10	17	22	125	50	62	91	217	126	122	210	169	168	221	204	54	108	72	81	32	30
9	159	78	73	89	90	6	197	167	233	219	36	118	13	134	56	236	225	192	193	2
8	186	177	31	230	74	132	34	205	180	94	234	127	135	212	157	128	240	21	191	57
7	164	92	26	175	66	8	107	106	145	187	16	24	14	190	218	116	188	223	4	195
6	181	138	37	120	220	184	146	83	178	9	5	43	99	173	101	27	239	64	229	162
5	216	7	207	124	39	10	20	96	95	103	201	44	143	67	139	152	59	23	15	52
4	206	42	170	194	68	77	163	88	131	154	144	61	235	121	28	161	151	214	158	148
3	40	51	129	189	141	79	84	227	142	155	113	123	196	82	112	119	49	33	211	130
2	166	150	156	176	1	203	3	41	60	55	48	209	88	199	114	133	171	174	71	232
1	179	53	140	29	231	147	25	137	102	172	100	76	11	58	238	19	149	65	45	110

Increase crop diversity - Intercropping

LLINOIS Crop Sciences college of agricultural, consumer & environmental sciences

Why intercropping matters

- Mixed intercropping is a crop diversification approach in which two or more crops are grown together in no specific arrangement:
 - Improve ecosystem services.
 - Financial profit.
 - Production efficiency.
 - Social wellness.

Intercropping breeding challenges

- Major global crop species are grown as monocrop, with breeding programs tailored for them.
- Intercrop breeding is more complex since it requires the optimization of two or more crops simultaneously.

Objectives

- I. Assess genetic variability and genetic correlation of forage yield and quality traits in UIUC oat germplasm under oat-pea intercrop conditions.
- II. Evaluate the general mixing ability (GMA) and specific mixing ability (SMA) of UIUC oat germplasm in oat-pea mixtures.
- III. Evaluate high-throughput phenotyping (UAVsensors) methods to improve cost and efficiency in oat-pea intercrop biomass estimation.

Methodology workflow

Experiment location

Site Name	South Farm
Location	Urbana, IL
Elevation(m)	219.7
Hardiness zone	5b (-15 to -10 °F/-26.1 to -23.3 °C)
Soiltype	SiltLoam
Estimate plot area (m²)	9.3
Planting seasons	Fall 2022 (August - October), Spring 2023 (April — July), and Fall 2023 (August - October)

LILINOIS Crop Sciences college of agricultural, consumer & environmental sciences

Experimental design

Mixed Design:

- Full factorial: 24 Oats X 4 Pea, 3 reps
- Mixed plots/rep: 24 oats X 4 peas = 96
- Mono plots/rep: 24 oats + 4 peas = 28
- Total plots per rep: 124
- Total plots: 372
- Plot size: 20 x 4.5 ft

Planting:

- Planting depth:
- ~1 inch
- Seeding ratio:
- Oat : Pea (40:60)
- Seeding rate:

Oat (mono = 27 (~1M/ac), mix = 12 plants sqft).

Pea (mono = 13 (~400K/ac), mix = 8 plants sqft).

• Pea inoculation:

Rhizobium Powder.

- Harvest stage:
- Oat boot early heading stage

Germplasm

Germplasm	Origin	Year Released	Max PH (cm)	Tannin free
Austrian	Landrace	NA	121.9	No
FrostMaster	NA	NA	121.9	Yes
Windham	NDSU & USDA-ARS	2007	73.7	Yes
Whistler	Progene Research of Washington	2005	81.3	Yes
Arvika 4010 - Spring	Canada			

4 Winter Pea (*Pisum sativa*)

<u>Selection Criteria</u>: Varieties, Maturity, Plant height, Winter hardiness, Forage.

I ILLINOIS

Crop Sciences college of agricultural, consumer & environmental sciences 24 Spring Oat (*Avena sativa*) <u>Selection Criteria:</u> Varieties, Checks, Maturity, Plant height, Forage.

Germplasm	Origin	YOR	Maturity	Plant Height (cm
Baker	Iowa State University	2007	Early	95.1
Buckskin	UIUC	2008	Early	89.8
Colt	SDSU	2009	Early	91.8
Corral	UIUC & Cornell University	2010	Early	81
Deon	University of Minnesota	2013	Late	96.8
Esker	University of Wisconsin	2019	Midseason	90.6
Excel	Purdue University	2006	Late	91.9
Goliath	SDSU	2012	Late	110.2
Hayden	SDSU	2014	Midseason	91.7
Horsepower	SDSU	2011	Midseason	85.1
IL17-5238*	UIUC	NA	Midseason	85.9
IL17-7334*	UIUC	NA	Midseason	71.2
IL17-1253*	UIUC	NA	Midseason	83.3
IL17-7339*	UIUC	NA	Midseason	74.5
Leggett	AAFC-Manitoba	2004	Late	89.6
Natty	SDSU	2014	Midseason	97.2
Newburg	North Dakota	2011	Late	100.9
Ogle	UIUC	1981	Midseason	89.2
Reins	UIUC	2015	Early	79.8
Rushmore	SDSU	2019	Midseason	82
Saber	UIUC	2010	Early	82.2
Saddle	SDSU	2017	Midseason	82.2
Spurs	UIUC	2003	Early	89.7
Warrior	SDSU	2018	Late	83.4

Phenotypes collected

Trait	Category	Units	Variable Type	Crop Ontology
Seedgermination	Agronomic	%	Continuous	CO_341:0000075
oat plants per m2	Agronomic	Count	Discrete	CO_356:2000103
Pea plants per m2	Agronomic	Count	Discrete	CO_356:2000103
Plant height (crop height model)	Agronomic	cm	Continuous	CO_350:0000021
Dry matter Yield (DMY)	Agronomic	Lb/ac	Continuous	CO_350:0000277
Crude Protein (CP)	Forage Quality	%	Continuous	CO_345:0000016
Acid detergent fiber (ADF)	Forage Quality	%	Continuous	CO_345:0000001
Neutral detergent fiber (NDF)	Forage Quality	%	Continuous	CO_345:0000029
Total Digestible Nutrients (TDN)	Forage Quality	%	Discrete	NS
Relative Feed Value (RFV)	Forage Quality	NS	Discrete	NS
Vegetation Indices	Other	NS	Continuous	CO_321:0000301

LILINOIS Crop Sciences College of Agricultural, consumer & environmental sciences

Phenotypes collected

COLLEGE OF AGRICULTURAL. CONSUMER

& ENVIRONMENTAL SCIENCES

- **DM Yield:** weight of harvested above-ground biomass after all water has been removed
- Crude Protein (CP): protein N and nonprotein N (total N x 6.25)
- Fiber components:
 - Neutral detergent fiber (NDF)
 - Hemicellulose, cellulose, and lignin
 - Inversely related to intake
 - Partially digestible
 - Acid detergent fiber (ADF):
 - Cellulose and lignin
 - Highly indigestible

Relative Feed Value (RFV)

- Index used to compare similar forages
- Calculated based on Digestible dry matter (DDM) and animal dry matter intake DMI

Total Digestible Nutrients (TDN)

- Indicates relative energy value of forage to an animal
- Calculated based on digestible crude protein, digestible crude fiber, digestible N-free extract and digestible crude fat

Multi-season Yield Results

Ranking Trait	Top 5 oat genotypes (GMA)	Top 4 pea genotypes (GMA)	Top 5 oat-pea combinations (SMA)
	BUCKSKIN	WINDHAM	SPURS x WINDHAM - 794
	ESKER	FROSTMASTERS	BUCKSKIN x FROSTMASTERS - 792
DM Yield Fall 22	REINS	WHISTLER	REINS X WINDHAM - 774
	HORSEPOWER	AUSTRIAN	BUCKSKIN × WHISTLER - 757
	SPURS		EXCEL x WINDHAM - 749
	BUCKSKIN	ARVIKA	COLT x FROSTMASTERS – 1783
	IL17-7334	WINDHAM	BUCKSKIN × ARVIKA – 1704
DM Yield Spring 23	IL17-7339	FROSTMASTERS	SADDLE × FROSTMASTERS – 1654
	SADDLE	AUSTRIAN	IL17-7334 × FROSTMASTER – 1650
	IL17-1253		HORSEPOWER X ARVIKA – 1635
	ESKER	ARVIKA	OGLEX ARVIKA - 822
	SPURS	FROSTMASTERS	ESKER X ARVIKA - 820
DM Yield Fall 23	BAKER	WHISTLER	IL17-7334 × ARVIKA – 762
	BUCKSKIN	AUSTRIAN	HORSEPOWER × ARVIKA - 756
	SABER		RUSHMORE × ARVIKA - 756
	BUCKSKIN	ARVIKA	HORSEPOWER x ARVIKA – 965
	SPURS	WINDHAM	BUCKSKIN × ARVIKA - 959
DM Yield across	SADDLE	FROSTMASTERS	SADDLE x ARVIKA - 941
	BAKER	WHISTLER	SABER × ARVIKA – 938
	HORSEPOWER	AUSTRIAN	IL17-7339 × ARVIKA – 930

Yield & Quality – Mono vs. Mix

Crude Protein

ADF

RFV

41

% NDF

GMA & SMA results

Trait	Oat GMA Variance	H²	Predicted Mean	Range	Pea-GMA Variance	SMA (oat:pea)
СР	0.505***	0.77	17.5	15.49 - 21.69	0.233***	NS
ADF	0.186*	0.4	26.15	24.45-27.35	0.625***	NS
NDF	0.679 ***	0.56	39.74	37-42.36	0.025	NS
TDN	0.066 ***	0.56	62.21	61.5 - 63	6.43E-08	NS
RFV	12.952 **	0.45	161.4	151.2 - 170	4.704 *	NS
DMY	935303.33 ***	0.62	819	435-1053	1767273.65***	NS
Plant height	3.894 ***	0.7	38.75	31.63 - 48.28	20.320 ***	NS

Crop Sciences college of agricultural, consumer & environmental sciences Well-performing lines should display high GMA and low SMA.

Ranking the oat-pea mixture performance by forage quality standards

mixtures, and grasses.						
Quality Standard	СР	ADF	NDF	RFV		
% of DM						
Prime	>19	<31	<40	>151		
1	17-19	31-35	40-46	151-125		
2	14-16	36-40	47-53	124-103		
3	11-13	41-42	54-60	102-87		
4	8-10	43-45	61-65	86-75		
5	<8	>45	>65	<75		

Quality standards for logumos logumo grass

Forage Quality Standards

Karla A. Hernandez, 2020

Forage quality needs of cattle and horses

Adapted from Undersander et al., 1994

ILLINOIS Crop Sciences

COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

Ranking the oat-pea mixture performance by forage quality standards

mixtures, and grasses.							
Quality Standard	СР	ADF	NDF	RFV			
% of DM							
Prime	>19	<31	<40	>151			
1	17-19	31-35	40-46	151-125			
2	14-16	36-40	47-53	124-103			
3	11-13	41-42	54-60	102-87			
4	8-10	43-45	61-65	86-75			
5	<8	>45	>65	<75			

Quality standards for logumos logumo grass

Forage Quality Standards

Karla A. Hernandez, 2020

102-87 86-75 <75 100 110 120 Relative Forage quality need

Forage quality needs of cattle and horses

Adapted from Undersander et al., 1994

Note: only ~0.5 Ton/ha

ILLINOIS Crop Sciences

COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

Ranking the oats, peas & oat-pea

Ranking Trait	Top 5 oat genotypes (GMA)	Top 4 pea genotypes (GMA)	Top 5 oat-pea combinations (SMA)
	BUCKSKIN	WINDHAM	SPURS × WINDHAM - 794
	ESKER	FROSTMASTERS	BUCKSKIN x FROSTMASTERS - 792
DM Yield Fall 22	REINS	WHISTLER	REINS × WINDHAM - 774
	HORSEPOWER	AUSTRIAN	BUCKSKIN × WHISTLER - 757
	SPURS		EXCEL × WINDHAM - 749
	BUCKSKIN	WHISTLER	COLT x WHISTLER – 21.6
	EXCEL	WINDHAM	GOLIATH x FROSTMASTERS – 19.8
СР	LEGGETT	AUSTRIAN	SABER X WINDHAM – 19.8
	IL17-5238	FROSTMASTERS	COLT x FROSTMASTER – 19.8
	OGLE		GOLIATH x WINDHAM – 19.55
	RUSHMORE	AUSTRIAN	DEON × AUSTRIAN - 24.4
	SADDLE	WHISTLER	SADDLE x AUSTRIAN - 25
ADF	HORSEPOWER	WINDHAM	CORRAL X AUSTRIAN – 25.19
	SABER	FROSTMASTERS	WARRIOR × AUSTRIAN - 25.3
	IL17-7374	al las	WARRIOR X WHINDHAM - 25.3
	BUCKSKIN	WHISTLER	COLT × FROSTMASTERS – 37.86
	COLT	WINDHAM	IL17-1253 × WHISTLER - 38
NDF	IL17-5238	AUSTRIAN	CORRAL × AUSTRIAN - 38
	CORRAL	FROSTMASTERS	RUSHMORE × AUSTRIAN – 38.24
	RUSHMORE		SADDLE x FROSTMASTERS – 38.28

Pea winter survival – Austrian

UAV-Multispectral yield prediction

Attended a Hands-On Workshop in High Throughput Phenotyping (HTP), 2021, Utah.

Collaborator & Drone Pilot: Raysa Gevartosky

Drone: DJI Matrice 300 RTK

Camera: Thermal & Hyperspectral camera (Micasense Altum)

LLINOIS Crop Sciences college of agricultural, consumer & environmental sciences

UAV-Multispectral yield prediction

Correlation plot of dry matter yield (DMY) and UAV-based Vegetative indices

IILLINOIS

Crop Sciences COLLEGE OF AGRICULTURAL. CONSUMER & ENVIRONMENTAL SCIENCES

Preliminary results indicate

- Significant genetic variability for yield and quality traits. WE CAN DO BREEDING!
- Strong genetic correlations between key forage traits. WE NEED TO CREATE WEIGHTS.
- Oat genotypes display high GMA variance and low SMA variance. GREAT FOR BREEDING LOGISTICS.
- UAVs can be used to predict yield. GREAT FOR BREEDING LOGISTICS.
- Oats: BUCKSKIN and SPURS, & Peas: ARVIKA and WINDHAM are the best yield over all mixtures, with BUCKSKIN/ARVIKA as the best mixture.
- BUCKSKIN/WINDHAM is a good quality mixture. WAIT for 2023 results.
- AUSTRIAN was the only pea that survived winter after one cut.

ILLINOIS Crop Sciences

COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

Thanks

PRACTICAL

FARMERS

of lowa

- UIUC Small Grains
 - Milcah Kigoni
 - Jessica Rutkoski
 - Tadele Kumsa
 - Luis Gehrke
 - Anup Dhakal
 - Sheila Scheffel
 - Lucas Munaro
 - Jeremy Logrono
 - Raysa Gevartoski
 - Sophia Arista

Funding

USDA - NIFA

UIUC - ACES

Questions

Complete and incomplete factorial experimental designs

- Evaluate accuracy of estimating GMA, SMA, Error variances in complete and incomplete experimental designs
- Design B (incomplete factorial design) proposed for GMA and SMA variances in a resource efficient way

Haug et al., 2021

UAV-based Species Classification in mixed plots

- Fraction yield is the partitioned yield data of species in a mixture.
 - Producer effect an individual's effect on its own yield
 - Associate effect its effect on the companion species' yield
- Characterization of fraction yields enhance GMA selection accuracy

Quadrat method of counting pea and oat per sqft

UIUC Small Grains Improvement

Micasense Altum RGB sensor Ground resolution: 6.7 mm/pix Flight height: 49 ft

Zenmuse P1 RGB sensor Ground resolution: 2.9 mm/pixel Flight height: 40 ft

Dr. Flores Paulo Assistant Professor in Precision Agriculture, NDSU

Up-to 96% recall (TPR) observed using NDVI data and random forest multi-classifier for sugar beet vs 3 weed species, Philipp et al., (2017)

3 flights done in Spring 2023 using high resolution camera

Main Expected Output

A feasible and efficient breeding scheme for developing oat-pea mixtures with superior forage yield and quality

