

Increased disease potential 0%

select your top three challenges. Cover Crop Users

What are your biggest challenges with using cover crops? Please

CC objectives <u>must</u> be aligned with realistic establishment options

Managing your cash crop to cover crop effectively

Cameron Mills

Sustainability: A Farmor's Do

NoTill Farmer Webinar – 4/7/15 https://www.youtube.com/watch?v=hFA6oXevOQk

These people are your human resources and they are a key part of YOUR CONTEXT for making sound decisions about CCs!

STATISTICS INT

http://www.leopold.iasta	te.edu/news/calendar/2012-07-18/iowa-learning-farms-july-webinar-nathan-anderson		over ops uncil		1920
Camera and Vnice	July 2012 RF Webinar Nathan Anderson ppl	Illinois II	ndiana Iowa	Kansas Michigan	Minnesota Missouri
2	Our next speaker has a long-term perspective	Nebraska Nort	th Dakota Ohio	Outario South Dakota h	Wisconsin http://www.mccc.msu.edu/
Q3A.	What else would I like to see?		WHAT AR Cover crops are plants se within or outside of the	2016 MCCC meeting Feb.	
	* My yield monitor hit 400 bu/a with a CC already planted = Fertilizer applications that correspond to plant uptake demands = Our farm's organic matter levels to increase	Home	primary purpose of imp	yroving or maintaining ecosystem quality.	SOLD OUT- Wed. "The Science of Cover Crops,"
Mater	Our future children to attend school less than 20 miles away Farms that have an increased demand for labor because of increased diversity and need to hire employees A local laber to be an online in the unmany utilities health employees	Cover Crop Resources Cover crop species	facilitate widespread ado Midwest, to improve o	ption of cover crops throughout the ecological, economic, and social	Tues. Working Group meeting
Type your questions for the presenter of the Q&A bas	Water bodies that attract people to them, not repel Worker held conservation practices, and edge-of-field ones too Perennial croos on marrial ground	Cover crop selector tools		sum only.	Help the MCCC renovate
Attender List (17) + Heats (1)	More effective and efficient production on high quality ground My neighbor to understand 3 fall tillage passes are not necessary, and 5 total may have something to do with why his com was the first around to show drought stress	Innovator profiles Extension material	WHAT DO COV ENV	ER CROPS DO FOR THE IRONMENT?	its website by providing your feedback through a brief SUPVEV
Statistics MI		Publications	The second se		DITELOURVEI

Multimedia

Enhance biodiversity

• Increase soil infiltration, leading to less flooding,

Location Information Cash Crop Information Soil Information Attribute Information				areas forms beneficiared	But face to be here to be the sector								AREA SCD	
Location Information Select a state or province						GROWTH CY A = Annua B = Bienni P = Peren	<u>CLE</u> Il al	PLANT ARCHI	-Spreading	RELATIVE	WATER USE Low Medium High			
Cash Cr	P None or Prevented Plantin	ig 💌 Plant	Date:	Harvest Date:				COOL						
Drainage	e Information Select a draina	Cash Crop ge class 🔻	Flooding	No	GRASS				BROA	DLEAF		WA	ARM	- GRASS
Goal #1	Select an attribute	Goal #2	Select an attribute	✓ Goal #3 Select	A BARLEY	http:	//www.ars.u	sda.gov/serv	ices/software	e/download.	htm?softwa	reid=263	A <u>AMARANTH</u> Y	A FOXTAIL MILLET
	Select an attribute				A. QAT	CANOLA	A/B CAMELINA			EGUME			A BUCKWHEAT	A PEARL MILLET
	Nitrogen Source Nitrogen Scavenger				A Y	MUSTARD	PHACELIA	A FIELD PEA	A BERSEEM CLOVER	A/8 A/8	A COWPEA	A CLUSTER BEAN		A PROSO MILLET
	Soil Builder Erosion Fighter		Calendar ba	ised	A CEREAL RYE	RADISH	A FLAX	A <u>LENTIL</u>	A CRIMSON CLOVER	BIRDSFOOT TREFOIL	A/P	A SUNNHEMP		
	Weed Fighter Good Grazing		tool with site specif	n fic	A.	B. <u>TURNIP</u>	A KALE	A LUPIN Y	B/P RED CLOVER	A/B SWEET CLOVER	P PIGEONPEA	A MUNG BEAN	A CUCURBITA	A SUDAN GRASS
	Quick Growth Lasting Residue		recommenda	tions	A ANNUAL FESCUE	BEET	A SPINACH	A/P MEDIC	P CLOVER CLOVER	P SAINFOIN Υ		A SOYBEAN	A SAFFLOWER	A TEFF Y
	Forage Harvest Value Grain/Seed Harvest Value				SALINE TOLERANT	VB CARROT	A/B <u>CHARD</u>	ROUNDHEAD LESPEDEZA	KURA CLOVER	ALFALFA	FAVA BEAN	A/P PEANUT	A <u>SUNFLOWER</u> Y	CORN
	Interseed with Cash Crop				V 2.1. January	2016							Addition Addition	al Information

Phacelia (Phacelia tanacetifolia Benth.)

- Cool Season, broadleaf
- Annual
- Upright plant architecture
- Low water use
- Low salinity tolerance
- Seeding depth: ⅓ ¼ inch
- C:N ratio: 10 15
- Forms arbuscular mycorrhizal associations
- Attracts beneficial insects

♦ Back to Cover Crop Chart

Cool Season Broadleaf

Cover Crops to Improve Soil in Prevented Planting Fields

SD_FS-92 http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1187343.pdf July 2013

Prolonged rain and flooding has resulted in many fields that will go unplanted this year. Farmers in this situation need to weigh not only their program and insurance options ("prevented planting"), but should also assess agronomic options to ensure long-term productivity from this difficult situation.

Producers should explore the benefits of planting a cover crop that has the potential to use excess water, fix nitrogen, control weeds, reduce compaction, control erosion, and/or improve soil health and biology during the remainder of the season.

These together can build considerable yield potential for following crops. With the potential "prevented planting" payment and the improved yield potential following a full season "green manure" crop, their economic potential for the whole rotation could be considerable.

Producers are advised to check with USDA's Farm Service Agency (FSA) and Risk Management Agency (RMA) on prevented blanting requirements and harvest restrictions

Selecting high bio-mass cover crop mixes will rebuild topsoil. Cover crops, especially if notilled, will add organic biomass both above and below ground to rebuild topsoil quicker than if left to grow weeds or especially if left with no cover.

Avoid removing biomass from the field by harvesting for forage or tillage, which will reduce the organic matter benefits. Instead consider

http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1187343.pdf

Hello, Roseville, IL! Based on your zipcode of: 61473, the average ann

Detaile						
Details						
Name Your Mix:	CornPrep		Acres to Plant:	1	Zipcode:	61473
Bagging Option:	© Tote ⊚ 50	Select Increase Soil Organic	Matter	0	a	pplied inches
Seeding Method:	Drilled	Erosion Reduction	indecer			
		Nutrient Cycling Nitrogen Fixation		09/15/201	5	
Next Cash Crop:	Corn	Provide Lasting Resid	lue	6 05/01/201	6	
		Compaction Breaking	7			
Your selected growing pe	eriod will last 229 d	Supplemental Grazin Supplemental Hay	g	15.18 base 40 grov	wing degree days.	
		Diversify Introduced I Attract Beneficial Inse	Perennial Pasture			
Coals		Salinity Tolerance				
00013		Mycorrhizal Fungi Gro	owth			
Goal 1 (High Priority) Req	uired	Nematode Control		Goal 3 (Low Pri	iority)	
Nitrogen Fixation		Nutrient Cycling	•	Mycorrhiza	al Fungi Growt	h •

	WHAT DO YOU WANT TO ACCOMPLISH?	S	pecif	ic CC	S Pro	Products					
FERTILITY	Spring N fixation	0	0	0	0	•	9				
	Summer N fixation	0	0	0		0	0				
	Scavenge N in fall	•	•	•	0	0	0				
	Scavenge N in spring	0	•	•	0	•	9				
	Fast nutrient release	9	0	٢	•	•	٠				
SOIL BENEFITS	Reduce wind erosion		•	•	٠	٩	0				
	Reduce water erosion	0	٠	•	0	0	0				
	Alleviate compaction	•	•	•	0	C	٢				
	Add soil organic matter		9	9	0	0	0				
	Winter survivability	0	9	•	0	9	٠				
	Root knot nematode reduction	0	0	0	9	0	0				
FUNCTIONS	Stands erect	•	•	•	•	0	0				
	Length of vegetative stage	0	•	•	0	0					
	Winter ground cover	•	•	•	•	C	0				

Making the Most of Mixtures: Considerations for Winter Cover Crops in Temperate Climates

New Penn State report published on-line in May 2015

nors:

Charles White, Penn State University; Mary Barbercheck, Penn State University; Tianna DuPont, Penn State University; Denise Finney, Penn State University; Abbe Hamilton, Penn State University; Dave Hartman, Penn State University; Mena Hautau, Penn State University; Jermaine Hinds, Penn State University; Mitch Hunter, Penn State University; Jason Kaye, Penn State University; Jim La Chance, Penn State University

Contents

Introduction

Cover crops can provide multiple benefits. For example, they can improve soil health, supply nutrients to cash crops, suppress weeds, help manage insect pests, produce forage, support pollinators and beneficial insects, and reduce water and air pollution. However, not all cover crop species provide the same benefits. How can you best reap the multiple benefits of cover cropping with so many species to choose from? To multiply and diversify your cover crop benefits, plant mixtures.

This article will describe some of the basic concepts to consider when planning a cover crop mixture. Selecting complementary species to meet different farm management objectives, timing planting and management correctly, and using effective establishment and termination methods are all important for successful cover crop mixtures. Information in this article is based on the research and experiences of a multidisciplinary team of researchers, educators, and farmers who have been evaluating cover crop mixtures in the northeastern United States. Most of our experience with cover crop mixtures is in organic feed crop rotations in temperate humid climates where cover crops are used during overwinter fallow periods. Despite the regional and cropping system specificity of our experience, many of the principles described in this article can be applied to a variety of farming systems and climates. http://article.axtension.org/pages/72973/making-the-most-of-mixtures-considerations/ninter-cover-crops-river-competinatesf

Determining seeding rates in mixes

Determining appropriate seeding rates of each species in a mixture can be difficult. Start with the suggestions below, plant a small acreage, observe the results, and then make adjustments as necessary. Be aware that results will vary across fields, years, and climate zones.

Certain species are highly competitive against other species in a mix, including forage radish, canola (*Brassica rapa*), oats, sorghum-sudangrass, and cereal rye. Seeding rates of these species must be dramatically reduced from monoculture seeding rates to prevent them from dominating the mixture. Seeding rates for these species in mixtures should be no more than 2 to 3 lb/A for forage radish, 3 to 4 lb/A for canola, 15 to 20 lb/A for sorghumsudangrass, and 20 to 30 lb/A for oats or cereal rye.

Seeding rates for other grasses in a mixture can safely be reduced to between half and one-quarter of monoculture seeding rates to achieve a balanced stand with legumes and other broadleaf species. Legume components of a mixture, which tend to be weak competitors, are more safely kept near their monoculture rates to ensure establishment in the stand.

Cover crops as management tools Soil Cover Reduced erosion loss Increased infiltration Soil Weed Cove Aggregation Soil suppression crops temperature CCs impact soil moisture dynamics in many ways Labile C Crop growth Nematodes **Bio-drilling** Soil Microbial Nitrogen associations organic fertility matter P- fertility SARE 1 Nutrient capture

Soil moisture after radish vs. winter weeds 10 cm Surface soil dries out olid lines= forage radish more quickly after a low-residue Dotted lines= winter weed winterkilled crop like content 30 cm forage radish, allowing for field work water 50 cm Subsoil moisture /olu increases after radish winterkills, perhaps 70 cm because water flows down root channels 1/31/2014 1/1/2014 3/2/2014 12/2/2013

Cover crops as management tools

